OFFICIAL DOCUMENT

DO NOT REMOVE From Research Office

Evaluation of Frost Related Effects on Pavements

WA-RD 67.1

Final Report May 1984

Federal Highway Administration

TECHNICAL REPORT STANDARD TITLE PAGE 3. Recipient's Catalog No. 2 Government Accession No. 1. Report No. WA-RD 67.1 5. Report Date 4. Title and Subtitle May 1984 Evaluation of Frost Related Effects on Pavements 6. Performing Organization Code 8. Performing Organization Report No. 7. Author(s) Jo A. Lary, Joe P. Mahoney and Jatinder Sharma 9. Performing Organization Name and Address Washington State Transportation Research Center 10. Work Unit No. and the University of Washington 11. Contract or Grant No. Department of Civil Engineering WSDOT Y-2292 Seattle, WA 13. Type of Report and Period Covered 98195 12. Sponsoring Agency Name and Address
Washington State Department of Transportation Final Report Highway Administration Building 01ympia, WA 98504 14. Sponsoring Agency Code 15. Supplementary Notes WSDOT Contract Manager - Mr. Art Peters 16. Abstract This report describes the field data and analysis techniques used to evaluate the effect of winter ground freezing on WSDOT pavement structures during two thaw periods. Six field test sites were selected in District 2 for deflection testing and in situ instrumentation as well as materials sampling. The results show that a principal mechanism which necessitates load restrictions for some of the WSDOT pavement structures is the weakened condition of the base course during thawing periods. Presented in the report is a single revised load restriction table and a criterion to use in determining the time that load restrictions should be established. 18. Distribution Statement 17. Key Words No Restrictions. This document is Regulation, Tire, Axle, Load Restriction, available to the public through the Frost, Thaw, Seasonal Variation, Deflec-National Technical Information Service, tion Testing Springfield, Virginia, 22161. 21. No. of Pages 22. Price 20. Security Classif. (of this page) 19. Security Classif. (of this report)

EVALUATION OF FROST RELATED EFFECTS ON PAVEMENTS

bу

Jo A. Lary Joe P. Mahoney and Jatinder Sharma

Prepared by the

Washington State Transportation Center

and the

University of Washington

for the

Washington State Transportation Commission
Department of Transportation
and in Cooperation with
U.S. Department of Transportation
Federal Highway Administration
WSDOT Contract Agreement Y-2292

May 1984

Revised February 1985

TABLE OF CONTENTS

	est .	Page
ACKNOWLEDGMENT	ſ\$	iii
LIST OF FIGURE	ES	iv
LIST OF TABLES	S	iх
CHAPTER I:	INTRODUCTION	1
	BACKGROUNDSTUDY OBJECTIVEREPORT ORGANIZATION	1 4 5
CHAPTER II:	FIELD STUDY	6
	SITE SELECTION	6
	SR 97, MP 183.48 - 184.00	6 9 9 9
	INSTRUMENTATION	9
	Frost TubesSoil CellsDeflection Equipment	14
	ExtensometerFalling Weight Deflectometer (FWD) Benkelman Beam	20
	DATA COLLECTED	24
CHAPTER III:	DATA COLLECTION RESULTS	28
	DEFLECTION DATA	28
	Benkelman BeamFalling Weight DeflectometerExtensometer In Situ	. 28
; ;	BASE AND SUBGRADE MOISTURE CONTENTSFROST DEPTH AND FREEZING INDICES	39 48
	Frost TubesSoil Cell TemperaturesFreezing Indices	

TABLE OF CONTENTS (Continued)

	P	age
	LABORATORY DATA	52
CHAPTER IV:	DATA ANALYSIS	53
	BISDEF COMPUTER PROGRAMPSAD2A COMPUTER PROGRAM	53 67
	Summer Condition Tire Loads Spring Condition Tire Loads Determination of Equivalent Summer and Spring Loads	70 71 75
	LOAD ANALYSIS RESULTS CRITERION FOR ESTABLISHING WHEN TO APPLY LOAD RESTRICTIONS	88 91
	CRITERION FOR DURATION OF LOAD RESTRICTIONS	95
CHAPTER V:	CONCLUSIONS AND RECOMMENDATIONS	96
	CONCLUSIONSRECOMMENDATIONS	96 97
REFERENCES		99
APPENDIX A:	CALIBRATION OF RESISTIVITY GAGES	101
APPENDIX B:	LABORATORY TESTING DATA	127
APPENDIX C:	BISDEF COMPUTER PROGRAM INTERNAL OPERATION DESCRIPTION	138
APPENDIX D:	RESULTS OBTAINED FROM THE PSAD2A	141
APPENDIX E:	DEFLECTION DATA	183
APPENDIX F:	TEMPERATURE DATA SUMMARIES	311

ACKNOWLEDGMENTS

The authors would like to express their appreciation to Messrs. Newt Jackson and Art Peters of the Materials Laboratory, Washington State Department of Transportation for extensive support and assistance during the conduct of the study. A special thanks is extended to Mr. Don Ernst, State Maintenance Engineer, for his interest, support and reviews of the study.

Special appreciation is extended to Messrs. Randy Dunn and Buck Ware for the data collection associated with the Falling Weight Deflectometer. The success of the data collection effort is largely due to that specific activity. Additionally, the personnel who were so helpful throughout the study from WSDOT District 2 are gratefully acknowledged.

LIST OF FIGURES

			Page
Figure	1.	Location of Field Test Sites	1
	2.	SR 97, MP 183.48-184.00 - Cross Section	. 10
	3.	SR 2, MP 159.6-160.00 - Cross Section	10
	4.	SR 172, MP 2.00-1.90 - Cross Section	10
	5.	SR 172, MP 21.4-21.0 - Cross Section	11
	6.	SR 174, MP 2.3-2.0 - Cross Section	11
	7.	SR 2, Sunnyslope - Cross Section	11
	8.	Schematic of In Situ Frost Tube	13
	9.	Typical Soil Cell Layout	15
	10.	MC-310A Standard Soil Moisture Temperature Cell	16
	11.	MC-300B Soil Moisture-Temperature Meter	16
	12.	Typical Curve of Resistivity Versus Moisture Content	17
	13.	Schematic Drawing of Extensometer	19
	14.	Front Panel of Bison Instrument	21
	15.	Illustrations of a Falling Weight Deflectometer	22
	16.	Schematic of a Benkelman Beam	23
	17.	SR 97, MP 183.48 - Plot of FWD First Sensor Deflection Versus Time	. 29
	18.	SR 2, Sunnyslope - Plot of FWD First Sensor Deflection and Base and Sub- grade Moisture Contents	. 30
	19.	SR 2, Sunnyslope, Plot of FWD First	31

		P	age
Figure	20.	SR 2, MP 159.6 - Plot of FWD First Sensor Deflection and Base and Sub- grade Moisture Contents Versus Time	32
	21.	SR 172, MP 2.0 - Plot of FWD First Sensor Deflection Versus Time	33
	22.	SR 172, MP 21.4 - Plot of FWD First Sensor Deflection Versus Time	34
	23.	SR 174, MP 2.0 - Plot of FWD First Sensor Deflection and Base and Subgrade Moisture Contents Versus Time	35
	24.	Deflection Basin Schematic	37
	25.	Road Rater Deflection Basins and Back-Calculated Material Properties	38
	26.	SR 97, MP 183.48 - Spring and Summer Deflection Basins	40
	27.	SR 2, Sunnyslope - Spring and Summer Deflection Basins	41
	28.	SR 2, MP 159.6 - Spring and Summer Deflection Basins	42
	29.	SR 172, MP 2.0 - Spring and Summer Deflection Basins	43
	30.	SR 172, MP 21.4 - Spring and Summer Deflection Basins	44
	31.	SR 174, MP 2.0 - Spring and Summer Deflection Basins	45
	32.	Plot of PSAD2A Results for Determination of Allowable Spring Loads	78
	33.	Thawing Index vs. Depth of Thaw for Thin Asphalt Surfaced Pavements	92
	A1.	Chart for Correcting Resistance to 60°F	104
	A2.	SR 2, Sunnyslope - Calibration Curve	111

		Page
Figure	A3.	SR 2, Sunnyslope - Calibration Curve of 112 Resistivity Versus Subgrade Moisture Content
	A4.	SR 2, MP 159.6 - Calibration Curve of 113 Resistivity Versus Base Course Moisture Content
	A5.	SR 2, 159.6 - Calibration Curve of
	A6.	SR 174, MP 2.0 - Calibration Curve of
	A7.	SR 174, MP 2.0 - Calibration Curve of 116 Resistivity Versus Subgrade Moisture Content
	C1.	Flow Chart for the BISDEF Computer Program 140
	D1.	SR 97 - Tire Size 8-22.5
	D2.	SR 97 - Tire Size 9-22.5
	D3.	SR 97 - Tire Size 10-22.5 145
	D4.	SR 97 - Tire Size 11-22.5 145
	D5.	SR 97 - Tire Size 12-24.5 146
	D6.	SR 97 - Tire Size 14-17.5
	D7.	SR 97 - Tire Size 16-22.5
-	D8.	SR 2, Sunnyslope - Tire Size 8-22.5 149
	D9.	SR 2, Sunnyslope - Tire Size 9-22.5
	D10.	SR2, Sunnyslope - Tire Size 10-22.5 150
	D11.	SR 2, Sunnyslope - Tire Size 11-22.5 150
	D12.	SR 2, Sunnyslope - Tire Size 12-24.5
	D13.	SR 2, Sunnyslope - Tire Size 14-17.5
	D14.	SR 2. Sunnyslope - Tire Size 16-22.5

		· · · · · · · · · · · · · · · · · · ·	rage
Figure	D15.	SR 2, MP 159.6 - Tire Size 8-22.5	154
	D16.	SR 2, MP 159.6 - Tire Size 9-22.5	154
	D17.	SR 2, MP 159.6 - Tire Size 10-22.5	155
	D18.	SR 2, MP 159.6 - Tire Size 11-22.5	155
	D19.	SR 2, MP 159.6 - Tire Size 12-24.5	156
	D20.	SR 2, MP 159.6 - Tire Size 14-17.5	156
	D21.	SR 2, MP 159.6 - Tire Size 16-22.5	157
	D22.	SR 172, MP 2 - Tire Size 8-22.5	159
	D23.	SR 172, MP 2 - Tire Size 9-22.5	159
	D24.	SR 172, MP 2 - Tire Size 10-22.5	160
	D25.	SR 172, MP 2 - Tire Size 11-22.5	160
	D26.	SR 172, MP 2 - Tire Size 12-24.5	161
	D27.	SR 172, MP 2 - Tire Size 14-17.5	161
	D28.	SR 172, MP 2 - Tire Size 16-22.5	162
	D29.	SR 172, MP 21.4 - Tire Size 8-22.5	164
	D30.	SR 172, MP 21.4 - Tire Size 9-22.5	164
	D31.	SR 172, MP 21.4 - Tire Size 10-22.5	165
	D32.	SR 172, MP 21.4 - Tire Size 11-22.5	165
	D33.	SR 172, MP 21.4 - Tire Size 12-24.5	166
	D34.	SR 172, MP 21.4 - Tire Size 14-17.5	166
	D35.	SR 172, MP 21.4 - Tire Size 16-22.5	167
٠	D36.	SR 174 - Tire Size 8-22.5	
	D37.	SR 174 - Tire Size 9-22.5	169
	D38.	SR 174 - Tire Size 10-22.5	170
	D39.	SR 174 - Tire Size 11-22.5	170

			Page
Figure	D40.	SR 174 - Tire Size 12-24.5	171
	D41.	SR 174 - Tire Size 14-17.5	171
	D42.	SR 174 - Tire Size 16-22.5	172
	D43.	SR 172, MP 21.4 - Tire Size 8-22.5, Tire Pressure 95 psi	174
	D44.	SR 172, MP 21.4 - Tire Size 9-22.5, Tire Pressure 95 psi	174
	D45.	SR 172, MP 21.4 - Tire Size 10-22.5, Tire Pressure 95 psi	175
	D46.	SR 172, MP 21.4 - Tire Size 11-22.5, Tire Pressure 95 psi	175
	D47.	SR 172, MP 21.4 - Tire Size 14-17.5, Tire Pressure 95 psi	176
	D48.	SR 172, MP 21.4 - Tire Size 12-24.5, Tire Pressure 95 psi	176
	D49.	SR 172, MP 21.4 - Tire Size 16-22.5, Tire Pressure 95 psi	177
	D50.	SR 174 - Tire Size 8-22.5, Tire Pressure95 psi	179
	D51.	SR 174 - Tire Size 9-22.5, Tire Pressure95 psi	179
	D52.	SR 174 - Tire Size 10-22.5, Tire Pressure 95 psi	180
	D53.	SR 174 - Tire Size 11-22.5, Tire Pressure 95 psi	180
	D54.	SR 174 - Tire Size 12-24.5, Tire Pressure 95 psi	181
	D55.	SR 174 - Tire Size 14-17.5, Tire Pressure 95 psi	181
	D56.	SR 174 - Tire Size 16-22.5, Tire Pressure95 psi	. 182

LIST OF TABLES

			Page
Table	1.	Current WSDOT Emergency Load Restriction Table	2
	2.	Current WSDOT Severe Emergency Load Restriction Table	3
	3.	Location of Six Sites Selected for Instrumentation and Testing	8
	4.	Site Visit Dates and Data Collected for the Six Test Sites	25
	5.	Measurement of Deflection Using an Extensometer	46
	6.	Frost Depth as Measured by the Frost Tubes and Soil Temperatures from the Soil Cells	49
	7.	Summary of the Layer Characteristics for BISDEF Input	56
	8.	SR 97, MP 183.48 Results of BISDEF Analysis for Determination of Resilient Moduli, Stress and Stress Relationships for each Site Visit	57
	9.	SR 2, Sunnyslope - Results of BISDEF Analysis For Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit	59
	10.	SR 2, MP 159.6 - Results of BISDEF	61
	11.	SR 172, MP 2.0 - Results of BISDEF	63
	12.	SR 172, MP 21.4 - Results of BISDEFAnalysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit	. 64
	13.	SR 174, MP 2.3 - Results of BISDEF	. 65

		F	Page
Table	14.	Inputs Used in PSAD2A	68
	15.	Tire Loads and Tire Pressures for the Summer Condition	72
	16.	Diagonal (bias) Ply Tires for Trucks, Busses and Trailers Used in Normal Highway Service	73
	17.	Tire Loads and Tire Pressures for the Spring Condition	76
	18.	Comparison Between PSAD2A Predicted and Actual Field Surface Deflection	77
	19.	SR 97, MP 183.48 - Spring Allowable Loads and Corresponding Percent of the Maximum Legla Load	80
	20.	SR 2, MP 117.38 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	81
	21.	SR 2, MP 159.6 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	82
	22.	SR 172, MP 2.0 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	83
	23.	SR 172, MP 21.4 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	84
	24.	SR 174, MP 2.0 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	85
	25.	SR 172, MP 21.4 - Constant 95 psi Tire Pressure Analysis, Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load	86
	26.	SR 174, MP 2.0 - Constant 95 psi Tire Pressure Analysis, Spring Allowable Loads and Corresponding Percent of Maximum	87

		Page
Ta ble	27.	Summary of the Critical and Corresponding 89 Spring Allowable Load for Each Tire Size Modeled
	28.	ComparisonoftheCurrentandProposed 90 Load Restrictions
	29.	Summary of Freezing and Thawing Indices 94 Preceeding Deflection Test Dates
	A1.	Laboratory Data for Moisture Content
	A2.	Laboratory Data for Moisture Content Cal 106 ibration of SR 2, Sunnyslope Subgrade
	A3.	Laboratory Data for Moisture Content Cal 107 ibration of SR 2, MP 159.6 Base Course
	A4.	Laboratory Data for Moisture Content Cal 108 ibration of SR 2, MP 159.6 Subgrade
	A5.	Laboratory Data for Moisture Content Cal 109 ibration of SR 174 Base Course
	A6.	Laboratory Data for Moisture Content Cal 110 ibration of SR 174 Subgrade
	A7.	SR 2, Sunnyslope-Field Soil Cell Re
	A8.	SR 2, MP 159.6 - Field Soil Cell Re
	A9.	SR 174 - Field Soil Cell Resistivities 123 and Corresponding Moisture Contents
	A10.	SR 97 - Field Soil Cell Resistivities 125
	В1.	Asphalt Concrete Resilient Modulus Data 129 at 70°F
	B2.	Results of Subgrade Resilient Modulus 130 Testing for SR 97
	В3.	Results of Base and Subgrade Resilient 131 Modulus Testing for SR 2. Sunnyslope

		Page
Table	B4.	Results of Base and Subgrade Resilient 132 Modulus Testing for SR 2, MP 159.6
	B5.	Results of Base and Subgrade Resilient 133 Modulus Testing for SR 174
	D1.	SR 97, MP 183.48-184.00 - Results of the 143 PSAD2A Analysis for Spring and Summer Loading Condition
	D2.	SR 2, MP 117.38-117.62 - Results of the 148 PSAD2A Analysis for Spring and Summer Loading Conditions
	D3.	SR 2, MP 159.6-160.0 - Results of the 153 PSAD2A Analysis for Spring and Summer Loading Conditions
	D4.	SR 172, MP 2.0-1.9 - Results of the
	D5.	SR 172, MP 21.4-21.0 - Results of the 163 PSAD2A Analysis for Spring and Summer Loading Conditions
	D6.	SR 174, MP 2.3-2.0 - Results of the
	D7.	SR 172, MP 21.4-21.0 - Results of the
	D8.	SR 174, MP 2.3-2.0 - Results of the
	E1.	Benkelman Beam Deflections
	E2.	SR 97 - FWD Data, 08/16/83, Surface
	E3.	SR 97 - FWD Data, 01/11/84, Surface
	E4.	SR 97 - FWD Data, 01/31/84, Surface

		Page
Table	E5.	SR 97 - FWD Data, 02/21/84, Surface
	E6.	SR 97 - FWD Data, 02/29/84, Surface
	Е7.	SR 97 - FWD Data, 03/06/84, Surface
	E8.	SR 97 - FWD Data, 03/19/84, Surface
	E9.	SR 2, Sunnyslope - FWD Data, 08/16/83, 211 Surface Temperature = 99°F
	E10.	SR 2, Sunnyslope - FWD Data, $01/11/84$, 213 Surface Tempeature = $34^{\circ}F$
	E11.	SR 2, Sunnyslope - FWD Data, 01/31/84, 217 Surface Temperature - 43°F
	E12.	SR 2, Sunnyslope , 02/21/84, Surface 221 Temperature = 50°F
	E13.	SR 2, Sunnyslope - FWD Data, 02/29/84 225 Surface Temperature = 51°F
	E14.	SR 2, Sunnyslope - FWD Data, 03/06/84, 229 Surface Temperature = 60°F
	E15.	SR 2, Sunnyslope, 03/19/84, Surface
	E16.	Sr 2, MP 159.6 - FWD Data, 08/17/84, 237 Surface Temperature = 72°F
	E17.	SR 2, MP 159.6 - FWD Data, 01/01/84, 239 Surface Temperature = 34°F
	E18.	SR 2, MP 159.6 - FWD Data, 02/21/84, 243 Surface Temperature = 42°F
	E19.	SR 2, MP 159.6 - FWD Data, 03/10/84, 247 Surface Temperature = 48°F
	E20.	SR 2, MP 159.6 - FWD Data, 03/07/84,
	E21.	SR 2, MP Data, 03/21/84,

			P	age
Table	E22.	SR 172, Surface	MP 2.0, FWD Data, 08/17/83, Temperature - 75°F	258
	E23.		MP 2.0 - FWD Data, 01/10/84, Temperature = 34°F	260
	E24.		MP 2.0 - FWD Data, $03/01/84$, Temperature = 46° F	264
	E25.		MP 2.0 - FWD Data, $03/07/84$, Temperature = 60° F	268
	E26.		MP 2.0 - FWD Data, $03/21/84$, Temperature = $50^{\circ}F$	272
	E27.	SR 172, Surface	MP 21.4 - FWD Data 08/17/83, Temperature = 75°F	275
	E28.		21.4 - FWD Data, 01/10/84,	277
	E29.		MP 21.4 - FWD Data, 03/01/84, Temperature = 38°F	281
	E30.		MP 21.4 - FWD Data, 03/07/84, Temperature = 40°F	285
	E31.	SR 172, Surface	MP 21.4 - FWD Data, 03/20/84, Temperature = 34°F	289
	E32.	SR 174, Surface	FWD Data, 08/09/83, Temperature = 76°F	292
	E33.		FWD Data, 01/10/84, Temperature = 34°F	296
	E34.	SR 174, Surface	FWD Data, 03/01/84, Temperature = 38°F	300
	E35.	SR 174, Surface	FWD Data, 03/07/84, Temperature = 38°F	304
	E36.	SR 174, Surface	FWD Data, 03/20/84, Temperature = 40°F	308
	F1.	Tempera SR 97 (1	ture Data Summary for	312

	Page
Table F2.	Temperature Data Summary for
F3.	Temperature Data Summary for
F4.	Temperature Data Summary for
F5.	Temperature Data Summary for
F6.	Temperature Data Summary for
F7.	Temperature Data Summary for
F8.	Temperature Data Summary for
F9.	Temperature Data Summary for

CHAPTER I

INTRODUCTION

BACKGROUND

District engineers throughout the State of Washington (and all other northern states) are faced with the recurring problem of weakened pavement structures during spring thaw. One option available to reduce the pavement deterioration which can occur during this time period is load restrictions for truck traffic. When such restrictions are used, several questions arise such as:

- 1. Which pavement sections require load restrictions?
- 2. Are the present load restrictions adequate?
 - (a) How much damage do the current load restrictions preclude?
 - (b) How do the current load restrictions relate to enforcement polices?
 - (c) If the current load restrictions are inadequate, what restrictions should be used?
 - (i) Fixed (or constant) tire or axle loads?
 - (ii) Variable tire or axle loads?
 - (iii) Should tire pressures be considered?
- 3. When should load restrictions be applied and removed?

Two load restriction levels are currently in use by the Washington State Department of Transportation (WSDOT), emergency and severe emergency (refer to Tables 1 and 2, respectively). These load restrictions are based on an allowable maximum load per tire for a given tire size. There have been suggestions within WSDOT to change the load restrictions from tire sizes to axle weights as used by other states (such as Minnesota, Nebraska, and Alaska). The original WSDOT load restrictions were published in 1952. No significant revisions have been made except for the addition in 1957 of tubeless tire sizes and their corresponding restrictions.

To begin to address some of the above questions, the initial study effort included discussions by the research team with the central

Table 1. Current WSDOT Emergency Load Restriction Table.

EMERGENCY LOAD RESTRICTIONS

CONVEN	TIONAL TIRES	TUBELESS C WITH .5	·
SIZE TIRE WIDTH	GROSS LOAD EACH TIRE	SIZE TIRE WIDTH	GROSS LOAD EACH TIRE
7.00	1800 lbs.	8-22.5	2250 _{lbs.}
7.50	2250_{lbs}	9-22.5	2800 _{1bs}
8.25	$2800_{\text{lbs.}}$	10-22.5	3400_{lbs}
9.00	3400_{lbs}	11-22.5	4000_{lbs}
10.00	4000 lbs.	11-24.5	4000_{lbs}
11.00	4500 lbs.	12-22.5	4500 _{1bs.}
12.00*	4500 lbs.	12-24.5*	4500 _{1bs.}

* OR OVER

WASHINGTON STATE HIGHWAY COMMISSION
Rev. 10-1-57

DEPARTMENT OF HIGHWAYS

Table 2. Current WSDOT Severe Emergency Load Restriction Table.

SEVERE EMERGENCY LOAD RESTRICTIONS

CONVENT	TIONAL TIRES	TUBELESS OR WITH .5 M	
SIZE TIRE WIDTH	GROSS LOAD EACH TIRE	SIZE TIRE WIDTH	GROSS LOAD EACH TIRE
7.00	1800 lbs.	8-22.5	1800 lbs.
7.50	1800 lbs.	9-22.5	1900 lbs.
8.25	1900 lbs.	10-22.5	2250 lbs.
9.00	2250 lbs.	11-22.5	2750 lbs.
10.00	2750 lbs.	11-24.5	2750 lbs.
11.OO OR OVE	ER 3000 lbs.	12-22.5° OVER	3000 lbs.

WASHINGTON STATE HIGHWAY COMMISSION Rev. 10-1-57 DEPARTMENT OF HIGHWAYS

maintenance office, the Materials Laboratory and District 2. From these discussions, the following observations were made:

- Generally, district personnel know where significantly thaw weakened roads or road sections are located.
- 2. There is a reluctance to apply load restrictions to known problem roads or road sections until surface damage is observed during the spring thawing period. (This suggests that substantial fatigue damage can occur due to questions stemming from when to apply load restrictions.)
- 3. Enforcement of load restrictions is a major concern to WSDOT personnel. Some of these concerns include:
 - (a) The current load restrictions essentially preclude all large trucks due in part to steering axle limitations,
 - (b) No recognition is given to the varying pavement support conditions during the thaw period (i.e., the load capacity of a pavement structure varies with time).

In order to determine whether WSDOT should use restrictions based on tire size or axle weights, and to answer some of the questions posed above, District 1 conducted a load restriction study in 1980 [1]. The District 1 recommendation was to gather considerably more data in order to develop a method for determining when to apply and remove restrictions and what restrictions should be used.

STUDY OBJECTIVE

The overall objective of this research was to evaluate the effect of freeze-thaw in pavement layers on pavement structural capacity. More specifically the objectives were to:

- Measure the variation of base and subgrade moisture content, frost depth and location, and pavement deflection (surface and in situ).
- 2. Develop procedures to utilize easily obtained data, or otherwise provide for predicting when load restrictions should be applied on a given pavement structure.
- 3. Determine an appropriate load restriction criterion, such as a nomograph, new table, etc.

To accomplish these objectives, it was necessary to:

- 1. Collect data at several test sites, including measurement of:
 - (a) frost depth using frost tubes;
 - (b) moisture contents using soil cells;
 - (c) soil temperature using soil cells;
 - (d) dynamic deflection basins using the Falling Weight Deflectometer (FWD);
 - (e) static deflections using a Benkelman Beam, and
 - (f) dynamic and static deflections using an extensometer permanently buried in the pavement structure.
- 2. Collect weather data

This data, obtained from NOAA Climatic Reports, or the WSDOT maintenance offices, was used to calculate freezing indices, and to estimate depth of freeze using the Modified Berggren Equation.

3. Obtain pavement samples

Samples of the base and subgrade materials, and cores of the asphalt concrete were obtained for laboratory resilient modulus determination. At the time of sampling, the in situ density and moisture content of the base and subgrade were determined.

REPORT ORGANIZATION

The report contains five chapters and a series of appendices. Chapter 1 is used to provide background information and the study objectives. Chapter 2 is used to describe, in detail, the field study (including information on site selection, instrumentation, and data collected). Chapter 3 is used to discuss the results obtained from the data collected and Chapter 4 the data analysis. The study's findings, conclusions and recommendations are presented in Chapter 5.

CHAPTER II

FIELD STUDY

SITE SELECTION

District 2 of WSDOT was chosen for the location of all field test sites. Several criteria were used as a basis for test site selection. They were:

- 1. two basic types of pavement sites were selected: those which did and those which did not exhibit past occurrences of frost heave in the winter and thaw weakening in the spring.
- 2. each site should have a different subgrade material, and
- the pavement should be plowed in the winter to keep it snow free.

In order to satisfy the above criteria, two trips were made to District 2 and several sites were examined and documented. After consideration of all factors, six sites were selected for deflection testing with four of those sites also instrumented with frost tubes, soil cells and on two sites, extensometers. The six sites are shown on Figure 1 and listed in Table 3. Each test site was 500 feet (152 m) long and will be discussed briefly below.

SR 97, MP 183.48 - 184.00

This site, located near the intersection of SR 97 and SR 2, was selected as a control section. Frost heave problems were not anticipated as precautions had been taken during recent reconstruction to have sufficient depth of non-frost susceptible material. In 1982, 0.25 ft $(7.62\ \text{cm})$ of ACP, 0.25 ft $(7.62\ \text{cm})$ of crushed surfacing top course (CSTC) and 0.50 ft $(15.24\ \text{cm})$ of ballast were placed over the existing roadway.

SR 2, MP 117.38 - 117.62 (Sunnyslope)

This is a four lane highway in the Wenatchee area at an elevation of approximately 1,000 ft. (300 m). The frost heave at this site seems to be associated with cuts in layered sands and silts. The current roadway section is badly deteriorated with alligator cracking in the wheel paths and considerable patching in the areas of worst heave. This site received major reconstruction during the summer of 1984.

Figure 1. Location of Field Test Sites

Table 3. Location of Six Sites Selected for Instrumentation and Testing.

	State Route	Mile	posts	Instrumentation Placed
No.	Nos.	From	То	This is unless to the face of
1	SR 97 Northbound	183.48	184.00	2 frost tubes 1 moisture tube*
2	SR 2 Eastbound	117.38	117.62	2 frost tubes 2 moisture tubes 1 extensometer
3	SR 2 Eastbound	159.60	160.00	2 frost tubes 1 moisture tube
4	SR 172 Southbound	2.00	1.90	FWD testing only
5	SR 172 Southbound	21.40	21.00	FWD testing only
6	SR 174 Eastbound	2.30	2.00	2 frost tubes 1 moisture tube 1 extensometer

^{*}Each moisture tube consisted of four moisture cells

SR 2, MP 159.60 - 160.00

This site is located near Waterville at an approximate elevation of 2,500 ft. (760 m). It is a two lane pavement which was reconstructed with CSTC and a bituminous surface treatment (BST) in 1982. The pavement structure consists of BST over approximately nine inches (23 cm) of CSTC over one to two feet (30 to 61 cm) of fine, stoney, silty sand over basalt. Moderate frost heave occurs in a small cut area.

SR 172, MP 2.00 - 1.90

This site, located near Waterville, has an approximate elevation of 2,500 ft. (760 m). It is a two lane pavement which consists of approximately six inches (15 cm) of gravel overlain by BST and seal coats (applied as needed over the last 30 years).

The frost heaves occur predominantly in small cuts at the summit of vertical curves where the sandy silt (loess) is only two to three feet (61 - 91 cm) thick over basalt bedrock. Major patching is evident in the frost heave areas.

SR 172, MP 21.4 - 21.0

This site, with an approximate elevation of 2,500 ft. (760 m), is located near Mansfield. The two lane roadway was constructed in 1969 with 1.5 ft. (46 cm) of gravel overlain by a BST. Additional BST's were placed in 1973 and 1975.

Frost heave at this site seems to be associated with fine, sandy silt located at the beginning and end of a cut.

SR 174, MP 2.3 - 2.0

Located near Coulee Dam, at an elevation of approximately 2,500 ft. (760 m), this site consists of about 10 inches (25 cm) of base course material overlain by 1.7 inches (4.3 cm) of asphalt concrete. A BST was applied to this section during late summer 1983 with a leveling treatment applied to fill in the ruts. Frost heave is associated with cuts made in layered silts. Cross sections of the sites are shown in Figures 2 through 7.

INSTRUMENTATION

A main objective of this study was to measure changes in pavement strength over an 18 month period. To this end, four of the six sites

Figure 2. SR 97, MP 183.48-184.00 - Cross Section.

Figure 3. SR 2, MP 159.6-160.00 - Cross Section

Figure 4. SR 172, MP 2.00-1.90 - Cross Section

Figure 5. SR 172, MP 21.4-21.0 - Cross Section

Figure 6. SR 174, MP 2.3-2.0 - Cross Section

Figure 7. SR 2, MP 117.38-117.52 (Sunnyslope) - Cross Section.

were instrumented, as indicated in Table 3, with frost tubes to measure depth of freezing, and soil cells to measure subgrade and base course moisture contents and temperatures. Extensometers were installed at two sites to measure in situ structural bearing capacity. Paint marks were also placed on the pavement surface to facilitate repeatable deflection testing locations.

The University of Washington (UW) manufactured and/or assembled all instrumentation in the laboratory and the Washington State Department of Transportation (WSDOT) provided the drill rig and personnel to install the instrumentation in the field. The frost tubes, moisture sensors and extensometers were installed during December 1982 in below freezing temperatures and two feet (0.6 m) of snow cover (less than desirable conditions). Each instrument type is discussed below.

Frost Tubes

Generally it is recognized that if freezing temperatures penetrate a frost susceptible subgrade, the subsequent spring thaw results in lower subgrade strength [2].

In the past, frost depths were measured by drilling/digging holes adjacent to the pavement structure. This method, although accurate, was both costly and time consuming. Subsequently, starting with WSDOT District 1, a tube filled with methylene blue dye was constructed and inserted in the ground. When frozen the dye changed color which indicated the depth of freezing within a reasonable accuracy. The initial tubes built for this study often cracked due to repeated cycles of freezing and thawing. The dye then would leak out and the instrument would be left unusable. Modifications have since been made to allow for expansion within the tube when the water inside freezes.

The present frost tube apparatus (shown in Figure 8) consists of an outer opaque PVC tube with an inner diameter of one inch (2.54 cm) which is permanently installed in the ground. This outer tube houses the actual frost tube which is constructed of a rigid, clear polyethylene tube, 7/8 inches (2.2 cm) in outer diameter. Another hollow, flexible tube is placed within this polyethylene tube to allow for the expansion of the water upon freezing. The tube is then filled with Ottawa sand saturated by a 0.1% solution of methylene blue, a fluorecein dye. When thawed,

Figure 8. Schematic of In Situ Frost Tube.

this mixture is green in color. It changes to a pale, pinkish brown when frozen. These tubes can easily be read and are relatively inexpensive to construct.

The tubes were installed two inches (5 cm) below the pavement surface and along the fog stripe in order to make readings possible without interrupting traffic.

Soil Cells

Soiltest, Inc., MC-310A standard soil moisture-temperature cells were implanted in the subgrades of four of the sites at depths of four, three and two feet (1.2, 0.9, and 0.6 m) below the pavement surface and in the base course at a depth of one foot (0.3 m) to allow measurement of temperature and soil resistivity for determination of moisture content. (Figure 9 shows a typical site layout.) These cells were chosen for their relative ease of use, durability, low cost and wide range of sensitivity.

The cells are made up of two metal plates separated by a fiberglass binding which provides a coupling that varies with soil moisture content. Each cell has dimensions of approximately $1 \times 1 / 2 \times 1/8$ inch (2.5 x 3.8 x 0.3 cm). A small thermistor is also contained within the cell to measure soil temperature. Each cell has color-coded six foot leads (1.8 m) and the leads are coded with numbers to distinguish one cell from another. A photograph of a soil cell is shown in Figure 10.

The resistivity and temperature of the soil are read using a Soiltest MC-300B moisture-temperature meter as shown in Figure 11. This meter is an alternating-current ohmmeter which is entirely self-powered. To obtain moisture contents from resistivity measurements, it is necessary to calibrate the cells and soils in the laboratory. (A description of the calibration procedure is presented in Appendix A.) In order to get accurate calibration curves, it is necessary to compact the soil sample used during calibration to the same dry density as the soil in which the cell is placed in the pavement structure. A typical curve of resistivity versus moisture content is shown in Figure 12. The laboratory calibration of the soil cells is straightforward; however, the density of the soil and carefully obtained weight measurements made in

Figure 9. Typical Soil Cell Layout.

Figure 10. MC-310A Standard Soil Moisture-Temperature Cell.

Figure 1-1. MC-300B Soil Moisture-Temperature Meter.

Figure 12. Typical Curve of Resistivity Versus Moisture Content.

the laboratory are critical for development of a functional calibration curve (resistivity versus moisture content).

The cells were also installed along the fog stripe, as were the frost tubes so that measurements could be made without excessively disrupting traffic.

Deflection Equipment

Extensometer

One of the best ways to measure in situ structural bearing capacity of pavements is to measure in situ deflections. There are presently several ways to perform deflection tests, including: Benkelman Beam, Falling Weight Deflectometer, Dynaflect, Road Rater, etc. Each of these machines specialize in one particular aspect of the overall load-deflection relationship. There is no machine currently available which takes into account all possible variables that go into load-deflection relationships. For example, a Benkelman Beam measures only the rebound deflection in an almost static loading situation. The Falling Weight Deflectometer measures dynamic deflections from 3 to 24 kip (1.4 to 10.8 kg) loadings and simulates a vehicle moving at speeds greater than 30 mph (13.4 m/s) but is unable to simulate the rotation of principal stresses which actually takes place due to a moving vehicle. There is a need to measure in situ deflections that take into account all the variables. An extensometer (Figure 13) is capable of doing just that.

One advantage of the extensometer is that deflections under actual tire prints and varying loads can be measured. The limitation of the extensometer is that it measures deflection only at one point (the point where it is installed).

The typical extensometer used in this study consists of two 1-inch Bison coils (2.54 cm) placed parallel to each other in a modular PVC tube six feet (1.8 m) in length. Each coil is attached to a steel rod, one rod is fixed (lower rod) and the other of which is allowed to moved freely (upper rod). The idea of placing sensors (coils) parallel to each other is to relate the electromagnetic coupling between the coils to the spacing between them. This is done by the introduction of an inductance bridge wherein an output voltage as a function of strain is obtained,

Figure 13. Schematic Drawing of Extensometer

since a change in spacing from the initial spacing produces a bridge unbalance.

The external instrument package to which the sensors are connected contains all the necessary driving, amplification, balancing, read out and calibration controls and is self-powered. This instrument is manufactured by BISON Instruments, Inc. and is pictured in Figure 14.

The extensometers were calibrated in the laboratory before installation at the site.

Falling Weight Deflectometer (FWD)

The FWD is a device that measures dynamic deflections under a peak force magnitude of up to 24,000 lbs (10,900 kg). By virtue of the incorporation of a variable falling mass/buffer system, loads as low as 1,500 lbs (680 kg) are also possible. The associated electronic package is used to read the peak values of the applied plate pressure (stress) and seven deflection bowl readings simultaneously. The duration of the load pulse is normally "buffered" between 23 and 30 milliseconds, but other loading times are also possible. The standard loading plate, equipped with a small hole in the center for center deflection readings, is 11.8 inches (300 mm) in diameter. See Figure 14 for a schematic of an FWD. Figure 15 shows a photograph of a FWD and a corresponding sketch.

FWD deflections were taken at 50 ft. (15 m) intervals at each test site during most site visits. Four stress levels (drop heights) were used so that material stress sensitivities could be calculated.

Benkelman Beam

The Benkelman Beam is a device which measures maximum pavement deflection (actually pavement surface rebound) under static conditions. It is constructed of a long beam designed so that the tip can be placed between the dual tires on a single rear axle, dual tire truck. A dial gage attached to a reference point is used to measure pavement rebound. A standard load of 18,000 lbs (8,200 kg) is generally used [3]. (See Figure 16 for a schematic of a Benkelman Beam.)

The University of Washington Soiltest Benkelman Beam was used to gather deflections, and for comparison to extensometer data during some of the site visits.

Figure 14. Front Panel of Bison Instrument.

Figure 16. Schematic of a Benkelman Beam

(a) Photograph of a Falling Weight Deflectometer.

(b) Sketch of a Falling Weight Deflectometer.

Figure 15. Illustrations of a Falling Weight Deflectometer.

To facilitate repeatability of the location of deflection measurements (both FWD and Benkelman Beam, and hence comparisons of deflections between visits), paint marks were placed on the roadway at 50 ft. (15 m) intervals. Measurements were taken in the outer wheel path at each point during the site visits.

DATA COLLECTED

Field data was collected at the six sites over a 15 month period beginning in January of 1982, with special emphasis on the spring thaw periods. The following data were collected during some or all site visits:

- surface pavement deflection using the FWD and/or Benkelman Beam,
- 2. extensometer readings,
- 3. pavement temperature,
- 4. subgrade and base course temperature,
- 5. soil cell resistivity, and
- 6. frost penetration depth.

Table 4 provides a summary of the site visit dates and data collected for each of the six test sites.

Site Visit Dates and Data Collected for the Six Test Sites Table 4.

Frost Depth Checked	×××× ×××× ×	×× ×× ×××××
Soil Cell Moisture and Temperature Readings	×× ×××××××××××××××××××××××××××××××××××	×× ××× ×××××
Pavement Temperature Measurement	×××× ×× ×× ××	×××× ×× ××××
Extensometer Readings		
Benkelman Beam Deflection	××××	× ××
FWD Deflections	×××× ×× ×× ××	×××× ×× ××××
Date	02/23/83 03/04/83 03/09/83 03/24/83 08/11/83 08/16/83 01/11/84 01/17/84 01/17/84 02/29/84 03/19/84	02/24/83 03/03/83 03/09/83 03/17/93 03/17/93 08/17/83 01/10/84 01/31/84 02/22/84 03/01/84
Site	SR 97 MP 183.48	SR 2 MP 159.6

Site Visit Dates and Data Collected for the Six Sites (cont.) Table 4.

1-					
	Frost Depth Checked	×× ××	×××× ×		
	Soil Cell Moisture and Temperature Readings	×× ×××	· ××××××		
	Pavement Temperature Measurement	××××	×× ××××	×××××××	×××××××
	Extensometer Readings	×× ××	×		
	Benkelman Beam Deflection	×× ××	×		
1. 0.1c	FWD Deflections	××××	×× ××××	×××××××	×××××××
	Date	23/ 04/ 09/ 18/ 11/	08/16/83 01/11/84 01/17/84 01/31/84 02/21/84 02/29/84 03/19/84	02/24/83 03/03/83 03/09/83 03/17/83 08/17/83 01/10/83 03/01/84 03/20/84	02/24/83 03/03/83 03/09/83 03/17/83 08/17/83 01/10/84 03/01/84 03/07/84
	Site	SR 2 Sunnyslope		SR 172 MP 2.0	SR 172 MP 21.4

Table 4. Site Visit Dates and Data Collected for the Six Sites (cont.)

	•
Frost Depth Checked	×× ×× ××××××
Soil Cell Moisture and Temperature Readings	×× ×××× ××××
Pavement Temperature Measurement	×××××× × ×××
Extensometer Readings	×× ×× ×
Benkelman Beam Deflection	×× ×× ×
FWD Deflections	×××××× ×××
Date	02/24/83 03/03/83 03/09/83 03/17/83 03/24/83 03/10/84 01/17/84 01/31/84 02/23/84 03/20/84
Site	SR 174 MP 2.0

CHAPTER III

DATA COLLECTION RESULTS

In this chapter the data that were collected, both field and laboratory, are presented and summarized. This includes deflection data, subgrade and base course moisture contents, frost depths, weather data and resilient modulus data. It should be noted that the data was collected as a joint effort between the UW and WSDOT.

DEFLECTION DATA

Two types of surface deflection data were collected at the six test sites, Benkelman Beam data and Falling Weight Deflectometer (FWD) data. In situ deflection data was measured using extensometers.

Benkelman Beam Deflections

Benkelman Beam was proposed to be the method for collecting deflection data prior to the acquisition of the Falling Weight Deflectometer by WSDOT. The FWD was however, available before the beginning of data collection. Thus, the Benkelman Beam data was collected during the Winter and Spring of 1983 (and to a lesser degree during March 1984). Previous, earlier work by WSDOT indicates a correlation of 1:1 to exist between the Benkelman Beam and the FWD [4]. The Benkelman Beam Data is summarized in Table El in Appendix E.

The Benkelman Beam was also used to measure deflections on the extensometer and is discussed in that context later in this chapter.

Falling Weight Deflectometer Deflection Data

The FWD, as stated earlier, measures both maximum pavement deflection (the first sensor deflection) and the pavement deflection basin. The maximum pavement deflection averaged over the test section and normalized to a 9,000 lb (4,000 kg) load is plotted versus time in Figures 17 through 23. Also shown on these plots, where measured, is the base and subgrade moisture content variation with time. The maximum pavement deflections were calculated for a "standard" 9,000 lb (4,000 kg) FWD load to enable a "standardized" presentation of such data in Figures 17 through 23.

As indicated in these figures, spring was indeed the period of highest deflection, and was therefore the time when the pavement was

SR 2, Sunnyslope - Plot of FWD First Sensor Deflection and Base and Subgrade Moisture Contents (near MP 117.6) Versus Time. Figure 19.

and Subgrade Moisture Contents Versus Time.

SR 174, MP 2.0 - Plot of FWD First Sensor Deflection and Base and Subgrade Moisture Contents Versus Time.

Figure 23.

weakest structurally, as expected. The only exception to this was SR 2, Sunnyslope, where the summer deflection was the maximum deflection. This may be due to the high temperature on the day of summer testing (99°F) and the poor asphalt concrete condition (extensive alligator cracking). The deflections for 1984 in all cases reached a maximum value in late February or early March 1984 and had decreased from that maximum at the last site visit made about March 20, 1984.

It is also interesting to note that during January 1984 the pavement deflections at all sites were very low, as low as 8% (for SR 172, MP 2.0) of the maximum value recorded. It appears that the pavement structure was frozen at that time, as is indicated by the soil cell temperatures.

One problem with plots such as these shown in Figures 17 through 23 is that deflection measurements are taken only a few times per year and straight lines are drawn between the points. These lines mask the actual variation in deflection that occurred during the time period evaluated. It is important to realize these figures show only general trends.

The deflection basins measured by the FWD are important as they can be used to backcalculate the moduli of the various pavement layers. Several researchers, including Vaswani, Scrivner et. al, Moore, Hoffman and Thompson, and Cogill use deflection basins in their pavement evaluation methods [5]. A typical deflection basin is shown in Figure 24.

To show the importance of the use of a deflection basin, versus the use of only maximum pavement deflection, to evaluate a pavement section, an example will be presented. Figure 25 shows recorded deflection basins for two sections. The sections had nearly identical maximum deflections. Using the mechanistic technique developed by Hoffman and Thompson [5] and a basin parameter termed the "area", the moduli of the two sections were calculated. It can be seen that the moduli of the Monticello section were about four times larger than the moduli of the Sherrard section. Without the benefit of the deflection basin data, and based only on maximum pavement deflection, these two sections would have been erroneously assumed to be structurally equivalent. The use of the FWD data collected during this study to determine material properties at the sites is discussed in Chapter 4.

 ${\rm D_0},~{\rm D_1},~{\rm D_2},~{\rm D_3}$ - Used by Hoffman and Thompson [5] to Denote FWD Deflections Deflection Basin

Figure 24. Deflection Basin Schematic (after Ref. 6).

BACKCALCULATED MATERIAL PROPERTIES

Sherrard	<u>Monticello</u>			
$E_1/E_2 = 8$	$E_1/E_2 = 45$			
E ₁ = 75,000 psi	$E_1 = 288,000 \text{ psi}$			
$E_2 = 9,400 \text{ psi}$	$E_2 = 6,400 \text{ psi}$			

Figure 25. Road Rater Deflection Basins and Backcalculation of Material Properties (after Ref. 5.).

Deflection basin shape can also be used to provide information about the pavement structural strength characteristics. In general [7]:

- 1. a concave shape indicates a weak surface,
- 2. a convex shape indicates a weak subgrade,
- 3. a steep slope indicates general weakness,
- 4. a flat slope indicates strength,

Two average deflection basins for each test section were chosen for plotting in Figures 26 through 31. They were the basin measured during the summer and the basin with the highest maximum pavement deflection (spring). These basins, for comparative purposes, were normalized to a basin under a 9,000 lb (4,000 kg) FWD load.

With the exception of SR 2, Sunnyslope and SR 2, MP 159.6 there were substantial differences between the spring and summer deflection basins, particularly within the first five sensors (at 0, 7.87, 11.81, 17.71 and 25.59 inches (0, 200, 300, 450 and 650 mm) from the center of the load). This suggests that the main difference in strength for most of the sections occurred in the surface and base course with little variation occurring in the subgrade.

Extensometer In Situ Deflection Data

The extensometer data was collected using a standard "Benkelman Beam truck" with dual tires on a single rear axle and a rear axle weight of 18,000 lbs.(8,200 kg). At the same time the extensometer reading was obtained, a corresponding Benkelman Beam reading was taken.

Calibration curves were used to convert the change in voltage to a deflection. The results are presented in Table 5. At the SR 2, MP 117.38 (Sunnyslope) site the extensometer deflection readings and associated Benkelman Beam deflections were within about 25% of one another. At the SR 174 site there was a much higher variation between the two deflections. Overall however, the comparisons are favorable.

BASE AND SUBGRADE MOISTURE CONTENTS

The resistivity of the soil was recorded during most site visits at the sections instrumented with soil cells (see Table 3 in Chapter 2) so that moisture contents of the base and subgrade could be determined.

In general, all soils exhibit a decrease in strength with increasing moisture content. This is caused by a decrease in friction

Figure 27. SR 2, Sunnyslope - Spring and Summer Deflection Basins.

Figure 28.

Figure 29. SR 172, MP 2.0 - Spring and Summer Deflection Basins.

Figure 31. SR 174, MP 2.0 - Spring and Summer Deflection Basins.

Table 5. Measurement of Deflection Using an Extensometer.

Benkelman Beam Deflection (x 10 ⁻³ in.)			27	20	20	25.4	20.8	28	31.5	27	36.1	33.2
Deflectior	$(x 10^{-3} in)$		27.9	18.4	27.5	20.4	23.3	29.8	35.1	46.2	29.9	14.4
Sensiti-	vity		Max.	Max.	Max.	Max.	1/2 Max.	Max.	Max.	Max.	Max.	Max.
Calibra-	tion		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Data	Range		2	2	2	က	2	2	2	2	2	2
Extensometer D		Loaded	196	096	957	421	922	408	392	318	313	27
Extens	Amplitude	Unloaded	970	996	996	441	626	445	436	379	353	93
Tire	Tire Spacing (in.)		4 1/4	4 1/4	4 1/2	4 1/2	4 1/2	5 1/2	5 1/2	5 1/2	5 1/2	5 1/2
	Tire Size		9 1/2 x 8	9 1/2 x 8	8 1/4 x 8	8 1/4 × 8	8 1/4 × 8	8 × 10	8 × 10	8 × 10	8 × 10	8 × 10
Rear Axle Weight (1bs)		17,750	18,000	18,100	18,300	18,000	18,110	18,110	18,110	18,110	18,780	
Date			02/23/83	03/04/83	03/18/83	03/24/83	03/19/84	02/24/83	03/03/83	03/17/83	03/24/83	03/20/84
Site			SR 2	Sunny Slope				SR 174				

between particles due to the higher amounts of free water surrounding the soil particles. Since pavement deflection is substantially a function of the strength of the supporting layers (base and subgrade), it is likely that pavement deflection would increase with increasing moisture contents. The variation in moisture content with time is shown in Figures 18, 19, 20 and 23 presented in the preceding section.

Two sets of soil cells were installed at the SR 2, Sunnyslope site. Figures 18 and 19 show the moisture content variations for the two sets of cells. For the cells at the lower end of the test section (Figure 18), the moisture contents in the base and subgrade followed the same general trend. The moisture contents started out high in the Spring of 1983, decreased to a low in August of that year, increased dramatically during February of 1984. The moisture contents then decreased in March with the two cells closest to the surface showing an increase in moisture content at the last site visit. It is interesting to note that all the soil cells indicate peak moisture contents at or around February 21, 1984. This is the same time that the deflection increased to an almost peak value. The same general trend occurred at the upper end of the test section (Figure 19) with the exception being no variation in the moisture content of the base course or at a depth of four feet (1.2 m) below the surface.

It should be noted that when the soil is frozen, the resistivity readings are meaningless (as ice and water have different resistivities). So, for the deflection data taken when a pavement structure was frozen, no moisture contents were plotted.

The same trend which existed at SR 2, Sunnyslope also occurred at SR 2, MP 159.6 with sharp increases in both base and subgrade moisture contents during March 1984.

SR 174, MP 2.0 on the other hand, indicated very little variation in moisture content, at any level, throughout the year. The exception to this being a large increase in the subgrade moisture content at a depth of two feet (0.6 m) during March 1984. This lack of variation could be expected since the base and subgrade are both sandy, free-draining materials.

While four soil cells were installed in the SR 97 test section, no calibration curves were constructed as soil samples from the pavement

structure were not obtained, nor were in situ densities determined. The only samples obtained were those from the road shoulder. Use of these soils, and calibration with only a guess at the in situ dry densities would produce dubious results. However, looking at the variation in resistivities over time, it appears that the moisture contents were lowest in the summer, highest in the Winter/Spring of 1983 and higher again in Winter/Spring of 1984. Looking at the plot of deflection versus time for this site, this mirrors the trend in deflections.

The field soil cell resistivities and the corresponding moisture contents for all instrumented sites can be found in Appendix A.

FROST DEPTH AND FREEZING INDICES

Frost depth was measured using two different methods. The first was through the use of frost tubes and the second through the use of the thermistors in the soil cells. Frost depth can also be calculated using temperature based freezing indices and the modified Berggren Equation. Each will be described below.

Frost Tubes

Frost tubes were installed at four of the six test sites. The tubes were pulled from their casing during most site visits to determine the depth of frost penetration, if any. As stated in Chapter 2, the dye in the tubes changes from a green color to brown upon freezing. This color demarcation between the frozen and unfrozen layers is accurate to within about two inches (5 cm). A summary of the depths of freezing as measured by the frost tubes is found in Table 6. Also contained in this table are the soil cell temperatures.

The frost tubes indicated that the pavement structure was partially or completely frozen during late February and early March 1983 and during January 1984. It is the authors' opinion however that the indication of frozen conditions was the result of a problem with the dye rather than actual frozen ground. There have been considerable problems with these tubes in the past as far as the dye "disappearing" or "disintegrating". The dye manufacturer was contacted and questioned about the possibility of a chemical reaction occurring between the dye and the PVC tubing. No such reaction was anticipated. However, new frost tubes were constructed during February 1984 and the old tubes replaced. The old tubes were

Table 6. Frost Depth as Measured by the Frost Tubes and Soil Temperatures from the Soil Cells.

4													
peratures (°F)	5' Depth	38	40 30	30 20	42 39	45	31.5	32 33	39 40	37	40 36	36	34
	3' Depth	38	41 32	. E	42 41	45	32	31.5 34	38 40	30.5 - 36	39	36	34
Soil Cell Temperatures	2' Depth	39	30	30	42 41	- 77	29.5	31 31	3 6 6 6 6	29.5 - 32	39 33.5	32	34
Soi	l' Depth	38	40 29		40 39	45	32	34 8	3333	31 . 3	39 30.5	30	30
Frost Depth ⁽¹⁾	Tube 2	bottom 17"	bottom 17" bottom 31"	bottom 34" replaced	bottom 38"	bottom 16"	bottom 32"	frozen O replaced	top 6½" top 6"	frozen frozen - replaced	top 15" paved over	1 1	ı
Fros	Tube 1	top 5" bottom 16"	top 5" bottom 37"	rrozen bottom 34" replaced	top 7" bottom 9"	top 8" hottom 9"	no water	replaced	top 9" top 10"	top 15%" top 16" bottom 36" replaced	top 23" bottom 37"	frozen bottom 33"	replaced bottom 37"
	Date	02/23/83	03/04/83 01/11/84	01/11/84 01/31/84 02/17/84	02/23/84	03/04/83	01/11/84	01/17/84 01/31/84 02/17/84	02/24/83 03/03/83	01/10/84 01/17/84 01/31/84 02/17/84	02/24/83 01/10/84	01/17/84 01/31/84	02/17/84 02/23/84
	Site Location	SR 97 MP 183.48)		SR 2 Sunnyslope	MP 117.38			SR 2 MP 159.6		SR 174 MP 2.0		

These were the only dates where the frost tubes indicated freezing or the soil cells indicated below freezing temperatures. All other visits had no indication of frozen conditions. Note:

(1) The frost tubes are 40 inches long.

returned to the laboratory and observed to see if the green color, indicative of unfrozen conditions, returned. It did not. All of the tubes, or portions thereof, remained a grey-brown.

Another indication that the tubes may have been malfunctioning is a comparison between their predictions of frost depth and the corresponding soil cell temperatures as described below.

Soil Cell Temperatures

Soil cells were placed at depths of 4, 3, 2, and 1 feet (1.2, 0.9, 0.6 and 0.3 m) below the pavement surface. Each cell contained a thermister for temperature measurement. The results are presented in Table 6 for the dates when the frost tubes indicated frozen material. As can be seen from the data the comparisons did not indicate a good correlation.

According to the soil cells frozen material occurred at SR 97 during January 1984, at SR 2 Sunnyslope most of January 1984, at SR 2, MP 159.6 during the same time period and at SR 174 during January and part of February 1984. These temperature measurements correspond well to the low deflections, indicative of a frozen or partially frozen pavement structure, measured at the sites during that time frame. There is also no reason to doubt the accuracy of the thermistors. Hence, doubts about the accuracy and usefulness of the frost tubes must be raised.

Freezing Indices

A summary of the site specific temperature data collected from various WSDOT maintenance facilities is contained in Appendix F. The freezing indices calculated from the temperature data for each test site follows:

		1982-83	1983-84
1.	SR 97		
	MP 183.48-184.00	475°F-days	676°F-days
2.	SR 2		
	MP 117.38-117.62		510°F-days
3.	SR 2		
	MP 159.60-160.00	384°F-days	732°F-days

4.	SR 172		
	MP 2.00-1.90	474°F-days	719°F-days
	MP 21.4-21.0		
5.	SR 174		
	MP 2.3-2.0	172°F-days	470°F-days

The above data illustrates the obvious difference in severity between the Winters of 1982-83 and 1983-84 as characterized by freezing index. The design freezing indices (the average of the three coldest winters out of the last 30 years of record) range between 900 to 1100°F-days throughout much of District 2 with the average freezing index for a 30 year record of about 500°F-days. Thus, the Winter of 1982-83 was slightly less severe than average and 1983-84 above average.

By use of the modified Berggren equation (discussed in greater detail in Chapter IV), various estimates of the depth of ground freezing were made. By assuming the pavement structure and the upper portion of the subgrade can be characterized as a homogeneous granular material (γ_d = 130 pcf, w = 5%), the following depths were calculated for the freezing indices for each test site:

	•		Probable		Measured
			Date of	Calculated	Depth of
Tes	st Site		Maximum Depth	Depth of	Freeze
Loc	cation	Winter	of Freeze	Freeze (ft)	$\frac{1}{(ft)^{(2)}}$
1.	SR 97				
	MP 183.48-184.00	1982-83	2/9/83	3.3	-
		1983-84	1/23/84	4.0	5
2.	SR 2				
	MP 117.38-117.62	1983-84	1/23/84	3.4	3+
3.	SR 2				
	MP 159.60-160.00	1982-83	2/11/83	3.1	-
		1983-84	1/23/84	4.1	3+
4.	SR 172				
	MP 2.00-1.90	1982-83	2/15/83	3.3	-
	MP 21.4-21.0	1983-84	1/23/84	4.2	-
5.	SR 174				
	MP 2.3-2.0	1982-83	1/5/83	2.0	-
		1983-84	1/24/84	3.3	2+

Notes: (1) Calculated by use of modified Berggren equation

(2) Depths shown were obtained from Table 6 and are considered to be approximate. Limited soil temperature data was available for the Winter 1982-83.

The calcualted and measured depths of freeze are within the same ranges. The maximum calculated depth of freeze for a granular material and a freezing index of $1100^{\circ}F$ -days is about 5 to 6 ft. Thus, the winter of 1983-84 depths of freeze are, in general, about 1 to 2 ft. less than would occur during one of the three coldest winters out of 30.

Overall, the temperature data and associated calculations suggest that typical depths of freeze beneath the District 2 test sites are about 3 to 4 ft. with the maximum frost penetration occurring in late January through mid-February. As will be shown in Chapter IV, relatively few thawing degree days are required to place these pavement structures into the "critical period".

LABORATORY DATA

Asphalt concrete cores and base and subgrade soil samples were obtained from the four instrumented test sites. The soil samples were sent to the WSDOT Materials Laboratory to determine the gradations of each soil and to do limited resilient modulus testing. The asphalt concrete cores were kept at UW where limited resilient modulus work was completed. The results of this testing can be found in Appendix B.

CHAPTER IV

DATA ANALYSIS

This chapter is used to describe the method used to determine the material properties, and their variations over time, for the six test sites as well as development of a criterion for establishing when to establish load restrictions. Evaluation of load restriction criteria is also included. The first section in the chapter is used to discuss the use of the BISDEF computer program to develop, using FWD data, the resilient moduli and the stress-sensitivity relationships of the pavement layers. The second section discusses the use of the PSAD2A computer program to determine appropriate surface deflections and pavement layer strains during the weakest and strongest times of the year for the sites. Presented in the third section is a discussion of the results of the analysis. A fourth section is used to discuss the development of a criterion for when to establish load restrictions.

BISDEF COMPUTER PROGRAM [8]

BISDEF is a layered elastic computer program, developed at the U.S. Army Corps of Engineers Waterways Experiment Station, which can be used to determine the resilient moduli of pavement layers and the stresses at any point in the pavement structure. This program uses the concept of minimizing the difference for (or error) between the program calculated and actual measured deflection basins (as provided by the FWD data). The program varies the layer modulus values until a match is made between the input basin and the BISDEF predicted basin. An explanation of the internal operation of the program, along with an operation flowchart, is contained in Appendix C.

BISDEF was used in this analysis to determine the resilient moduli of the pavement layers during each site visit for the six test sites. It was also used to calculate bulk stress at the middle of the base course and bulk or deviator stress at the top of the subgrade. Since three or four stress levels (or load magnitudes) were used during each site visit, it was possible to develop the stress sensitivity relationships (MR- θ or MR - σ_d) for the base and subgrade layers. These relations were necessary as inputs for the PSAD2A program as discussed in the next section.

The required inputs for BISDEF are:

- measured deflections (mils) and their distances from the center of the load (inches),
- 2. the range of modulus values for each layer (psi),
- an initial estimate of the modulus value for each layer (psi),
- 4. the thickness of each layer (inches),
- 5. Poisson's ratio of each layer,
- 6. the load stress (psi) and load radius (inches), and
- 7. points in the pavement structure where stresses are desired.

The measured deflections input were the average deflection values over each test section for each site visit. The deflection spacings were the spacings of the FWD sensors. FWD sensors (and corresponding deflections) 1, 3, 5 and 7 were used in this analysis. This resulted in spacings of 0, 11.81, 25.59 and 47.24 inches (0, 300, 650 and 1200 mm) from the center of loading.

The range of allowable modulus values for each layer gives an upper and lower bound for the layer modulus (i.e., the predicted modulus value must be within the specified range). This allows the program user to specify the modulus value of a given layer, should that value be known, by limiting the range to a small value which brackets the known modulus value.

An initial estimate of each layer modulus was based on judgment and other previously completed work. It should be noted that the more accurate this estimate, the faster (hence less expensive) BISDEF provides the final modulus values.

The thicknesses of the layers were obtained from cross-sectional data provided by WSDOT and by measurement of the thicknesses of the layers during sampling in the summer of 1983. (The cross sections are shown in Figures 2-7 in Chapter II). Only three layer systems were analyzed so when CSTC and ballast or gravel base both were present, their thicknesses were combined. The subgrade was given a thickness of 212 inches (538 cm) underlain by a layer of infinite thickness with a modulus of 1,000,000 psi (70,300 kg/cm 2). The 1,000,000 psi (70,300 kg/cm 2) layer was used to counteract the tendency of layered elastic theory to over-predict the deflection in layers of infinite thickness. Using this layer gave the subgrade a finite thickness.

Poisson's ratios were determined from research presented in the literature [9]. The Poisson's ratio of the asphalt concrete layer materials was assumed to be 0.35, that of the base course to be 0.35 and that of the subgrade to be 0.45.

The load radius was the radius of the loading plate on the FWD and was equal to 5.91 inches (150 mm). The load stresses were the actual stresses applied to the pavement structure by the FWD.

As stated earlier, it was desirable to determine the bulk stress $(\theta = \sigma_1 + \sigma_2 + \sigma_3)$ at the middle of the base course layer and the bulk and deviator stress $(\sigma_d = \sigma_1 - \sigma_3)$ at the top of the subgrade. It was possible to do this by requesting BISDEF to provide the radial, tangential and vertical stresses at those points. It was necessary to specify the layer and the depth from the top of the pavement structure at which stresses were to be determined. The program uses the BISAR structural subroutine to calculates stresses. Table 7 shows the layer thicknesses, Poisson's ratios and stress points for the six test sites.

The results of the BISDEF analysis are shown in Tables 8 through 13. The stress relationships presented are of the form $M_R = k_1\theta^{-k_2}$ for layers that behaved as coarse-grained materials and $M_R = k_1\sigma_d^{-k_2}$ for layers that behaved as fine-grained materials (M_R decreasing with increasing stress). From these tables it is apparent that the pavement sections were frozen in the winter when base course moduli were in the range of 100,000 to 150,000 psi (7,000 to 10,500 kg/cm²) and subgrade moduli on the order of 40,000 to 70,000 psi (2,800 to 4,900 kg/cm²).

In general, for all the sections, the base and subgrade moduli were higher during the August 1983 site visit than at other times of the year. It should be noted that the SR 172, MP 2.0 test section was run as a two layer system with the bituminous surface treatment and base course combined into one layer. This was done as the computer program would not close when the system was run as a three-layer system. It was felt this was justified due to the weak structural condition of the pavement structure at this site.

These results, specifically the stress relationships and the asphalt moduli obtained from the BISDEF analysis were used as inputs for the PSAD2A computer program as discussed below.

Table 7. Summary of the Layer Characteristics for BISDEF Input.

Depth from Surface for Stress Determination (inches)	9.6 16.6	14.5 22.8	6.3 10.8	.5 .5	6.0	6.85(1) 7.85(1) 12.0(1)	13.0(1)
Poisson's Ratio	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35	
Thickness (inches)	2.6 14.0 212.0	6.2 16.6 212.0	1.8 9.0 212.0	2.5 6.0 212.0	1.5 9.0 212.0	1.7(1) 2.7(1) 10.3 212.0	
Layer	asphalt concrete base subgrade	asphalt concrete base subgrade	asphalt concrete base subgrade	bituminous surface treatment base subgrade	bituminous surface treatment base subgrade	bituminous surface treatment base subarade	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Site	SR 97 MP 183.48-184.00	SR 2 MP 117.38-117.62	SR 2 MP 159.6-160.00	SR 172 MP 2.0-1.9	SR 172 MP 21.4-21.0	SR 174 MP 2.3-2.0	

(1) A BST was applied to the roadway during late summer of 1983. The thickness of the layer was increased 1" due to the fact that the rut depths were filled in and then the BST applied.

SR 97, MP 183.48 Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit. . ∞ Table

	01		25	07	 O	25	
Subgrade Stress Relationship	$24,784 ^{0.062}$ $r^{2} = 0.633$	$32,418 \sigma_d^{-0.042}$	$46,214 \sigma_{\rm d}$	$41,013 \sigma_{\rm d}$ $r^2 = 0.83$	$38,073 \sigma_{\rm d}^{-0.090}$ $r^2 = 0.952$	46,733 °d -0.025	
Base Stress Relationship	$6,685\theta^{0.522}$ $r^2 = 0.998$	13,8550.305 r ² = 0.964	$9,1130.426$ $r^2 = 0.973$	$10,9720^{0.376}$ $r^2 = 0.965$	$8.0339^{0.450}$ $r^2 = 0.984$	35,637⊕ ^{0.226}	
Subgrade $^{\circ}_{d}$ (psi)	6.076 8.862 11.87	5.861 8.050 11.20	6.113 8.074 11.03	6.292 8.568 12.01	5.975 8.557 11.69	13.08 17.18	7.783 11.22 14.76
Base 9 (psi)	11.91 17.34 23.26	11.61 15.88 22.10	11.40 15.98 21.73	12.54 17.14 24.04	11.84 17.09 23.36	31.61	17.19 25.49 33.64
Subgrade M _R (psi)	27,500 28,900 28,600	30,000 29,900 29,200	32,500 29,500 28,800	34,000 32,000 31,700	32,500 31,100 30,600	43,800	8 0, 500 80,900 73,400
Base MR (psi)	24,500 29,400 34,800	29,600 31,500 36,000	25,400 30,500 33,400	28,000 32,800 35,800	24,200 29,500 32,800	77,700 82,700	170,900 180,000 180,000
AC MR (psi)	2,050,000 2,286,000 2,214,535	1,765,000 2,000,000 2,000,000	1,677,000 1,796,000 1,987,000	1,500,000 1,536,000 1,589,000	1,600,000 1,458,000 1,553,000	266,000 300,000	1,867,000 1,500,000 1,500,000
Applied Stress e (psi)	59.52 88.94 121.27	55.04 78.20 111.75	54.68 76.74 109.21	54.74 77.68 111.30	52.74 76.49 107.78	104.05 141.37	75.31 107.59 147.85
Pavement Applied Surface Stress Temperature (psi)	40	46	46	28	62	66	34
Date	02/23/83	03/04/83	03/09/83	03/18/83	03/24/83	08/16/83	01/11/84

Table 8. SR 97, MP 183.48 Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit (Cont.).

Subgrade Stress Relationship	$84,120 \sigma_{\rm d}^{-0.148}$ $r^2 = 0.833$	71,299 $\sigma_{\rm d}^{-0.345}$ $r^2 = 0.986$	$45,658 \frac{-0.119}{7}$ $r^2 = 0.520$	$47,216 \frac{1}{3}$	55,981 $c_d^{-0.257}$ $r^2 = 0.999$
Base Stress Relationship	11,703 θ 0.528 $r^2 = 0.977$	$16,0980^{0.337}$ $r^2 = 0.970$	$8,418\theta^{0.571}$ $r^2 = 0.982$	$13,1330.400$ $r^2 = 0.995$	$17,173\theta^{0.357}$ $r^2 = 1.000$
Subgrade	8.639	7.998	8.524	7.320	6.254
^o d	11.81	9.902	10.76	10.19	8.884
(psi)	16.17	12.49	13.74	13.14	11.24
Base	17.55	16.06	17.02	14.56	12.13
e	26.43	20.59	21.52	22.92	17.74
(psi)	33.79	24.95	27.45	26.28	22.40
Subgrade	61,800	35,000	34,800	35,800	34,900
M _R	56,900	32,000	35,500	35,700	32,000
(psi)	56,300	30,000	32,900	33,000	30,000
Base	52,600	41,300	42,000	38,500	41,800
M _R	68,100	44,000	49,600	45,600	48,000
(psi)	73,800	48,000	55,200	49,000	52,000
AC	1,724,000	1,700,000	1,900,000	2,000,000	2,500,000
M _R	1,500,000	1,700,000	2,000,000	1,804,000	1,900,000
(psi)	1,500,000	1,800,000	2,000,000	1,900,000	1,900,000
Applied	69.5	74.2	81.1	68.8	66.6
Stress	97.7	96.0	105.7	96.5	89.4
(psi)	139.4	127.7	142.3	131.2	118.2
Pavement Surface Temper- ature	34	20	51	09	50
Date	01/31/84	02/21/84	02/29/84	03/06/84	03/19/84

Table 9. SR 2, Sunnyslope - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit.

Subgrade Stress Relationship	$20,900 \sigma_{\mathbf{d}} = 0.370$ $r^2 = 0.998$	18,419 $\sigma_{\rm d}^{-0.298}$ $r^2 = 0.970$	$r^2 = 0.976$	18,799 $\sigma_{\mathbf{d}}^{-0.2C4}$ $r^2 = 0.916$	$20,059 \sigma_{\rm d}^{-0.380}$ $r^2 = 0.982$	24,794 o _d -0.509
Base Stress Relationship	1,247⊖ ^{1.36} r ² = 0.998	8,2260.530 r ² = 0.916	$9,623\theta^{0.428}$ $r^2 = 0.964$	11,5880.375 r ² = 0.968	$3,245\theta^{0.998}$ $r^2 = 0.990$	5,2160 ^{0.804}
Subgrade [⊙] d (psi)	2.44 3.32 4.88	2.33 3.04 4.08 4.85	2.21 2.85 3.78 4.55	2.46 3.22 4.14 5.12	2.42 3.12 3.89 4.64	3.26 4.06
Base ₀ (psi)	5.56 7.23 9.32	5.11 6.28 8.16 9.20	4.92 6.02 7.64 8.79	5.44 6.77 8.22 10.10	5.53 6.68 7.77 8.82	7.34
Subgrade M _R (psi)	15,000 13,500 11,600	14,500 12,900 12,200 11,500	13,800 15,600 11,500	15,000 13,600 12,500 12,500	14,200 13,300 11,800 11,200	13,600 12,200
Base M _R (psi)	13,000 18,000 26,200	19,000 23,000 24,000 27,000	19,400 20,100 23,000 24,600	21,600 24,000 26,100 27,200	17,000 21,800 25,700 27,900	25,900 29,800
AC M _R (psi)	450,000 460,000 468,000	460,000 460,000 468,000 460,000	350,000 432,000 400,000 450,000	400,000 433,000 466,000 450,000	320,000 400,000 400,000 400,000	247,000
Applied Stress (psi)	63.22 92.32 154.35	63.40 89.33 123.80 154.58	57.74 81.40 112.81 142.92	65.32 91.98 126.66 156.66	60.74 86.88 117.52 146.30	84.67 113.84
Pavement Surface Temper- ature (P)	40	48	46	28	29	66
Date	02/23/83	03/04/83	03/09/83	03/18/83	03/24/83	08/16/83

Table 9. SR 2, Sunnyslope - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit (Cont.).

Subgrade Stress Relationship	29,336 σ _d -0.404 r ² = 0.941	21,537 o _d -0.266 r ² = 0.941	$28,676 \sigma_{\rm d}^{-0.604}$ $r^2 = 0.949$	$20,711 \sigma_{\rm d} -0.363$ $r^2 = 0.998$	20,643 o _d -0.374 r ² = 0.956	19,060 od -0.321 r ² = 0.887
Base Stress Relationship			$15,052\theta^{0.253}$ $r^2 = 0.884$	11,782 θ 0.493 $r^2 = 0.949$	$17,912\theta^{0.216}$ $r^2 = 0.856$	$13,524\theta^{0.410}$ $r^2 = 0.297$
Subgrade °d (psi)	3.23 3.89 4.99	1.69 2.41 3.06 3.61	2.76 3.29 4.02 4.82	3.23 4.07 5.02	3.17 4.04 4.87	3.15 3.93 5.04
Base 0 (psi)	4.97 5.39 6.54	2.57 3.67 3.97 4.54	6.16 6.90 7.93 9.23	5.00 6.04 6.93	5.00 6.16 7.01	4.99 5.65 7.16
Subgrade M _R (psi)	18,400 16,700 15,400	18,400 17,500 16,200 15,000	16,000 13,600 12,000 11,400	13,500 12,500 11,500	13,300 12,500 11,300	13,400 11,900 11,500
Base M _R (psi)	53,000 61,600 60,700	116,300 99,000 98,000	23,500 25,200 25,400 26,200	26,300 28,000 31,000	25,200 27,000 27,000	24,000 31,400 29,000
AC M _R (psi)	350,000 385,000 400,000	500,000 500,000 550,000 500,000	390,000 418,000 445,000 450,000	413,000 410,000 410,000	363,000 360,000 400,000	392,000 350,000 395,000
Applied Stress (psi)	69.96 94.62 126.55	67.4 93.4 125.3 155.9	72.3 94.1 123.2 152.2	71.0 93.6 122.8	67.3 89.4 115.9	67.4 91.3 120.3
Pavement Surface Temper- ature (°F)	34	34	20	51	09	50
Date	01/11/84	01/31/84	02/21/84	02/29/84	03/06/84	03/19/84

Table 10. SR 2, MP 159.6 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit.

	7	∞		<u>o</u>		_
Subgrade Stress Relationship	$29.862 c_{d}^{-0.307}$ $r^{2} = 0.944$	17,462 ° -0.118 r ² = 0.791	25,782 $\sigma_{\rm d}^{-0.268}$ $r^2 = 0.864$	21,904 ° _d -0.199 r ² = 0.926	21,088 c _d -0.201 r ² = 0.632	6,152 c _d 0.227
Base Stress Relationship	1,26€θ ^{0.814} r ² = 0.962	$6,7060^{0.396}$ $r^2 = 0.997$	$9,508\theta^{0.327}$ $r^2 = 0.836$	$2,7870.658$ $r^2 = 0.953$	$4,2450.474$ $r^2 = 0.669$	282 ₀ 1.473
Subgrade ^o d (psi)		10.51 14.96 20.38	10.51 14.62 18.74	7.27 15.10 20.53 24.33	9.90 14.20 20.41 22.05	13.50 19.04
Base ⊖ (psi)	21.86 28.42 49.18	18.94 26.53 34.75	18.98 25.71 31.02	13.90 26.90 35.08 40.01	17.84 25.05 34.44 36.41	23.08
Subgrade M _R (psi)	13,900 13,100 11,700	13,100 13,000 12,100	13,500 13,000 11,500	10,000 12,700 12,200 11,500	13,000 12,800 12,200 10,600	11,100
Base MR (psi)	14,800 20,800 29,400	21,600 24,400 27,500	25,300 26,400 30,000	15,200 26,800 28,000 30,500	16,800 18,800 26,300 20,800	28,800 43,300
AC MR (psi)	1,200,000 1,500,000 1,200,000	1,200,000 1,200,000 1,268,000	1,000,000 1,222,000 1,300,000	1,100,000 1,029,000 1,267,000 1,318,000	2,155,000 2,460,000 1,600,000 2,400,000	931,000
Applied Stress (psi)	57.86 88.17 123.01	56.72 83.06 121.37	55.80 82.44 116.70	42.70 83.96 121.83 152.87	58.52 88.36 125.46 150.67	80.08
Pavement Surface Temper- ature(°F)	20	45	47	09	40	72
Date	02/24/83	03/03/83	03/09/83	03/13/83	03/24/83	08/17/83

Table 10. SR 2, MP 159.6 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit (Cont.).

Subgrade Stress Relationship		$21,492 \sigma_{\rm d}^{-0.197}$ $r^2 = 0.994$	$26,576 \sigma_d^{-0.287}$ $r^2 = 0.994$	$26,189 \sigma_{\rm d}^{-0.282}$ $r^2 = 0.968$	17,637 $\sigma_{\rm d}^{-0.122}$ $r^2 = 0.947$
Base Stress Relationship		$6,277\theta^{0.376}$ $r^2 = 0.988$	$4,628\theta^{0.398}$ $r^2 = 0.886$	$4,4610.554$ $r^2 = 0.984$	18,5040 ^{0.151} r ² = 0.536
Subgrade		13.50	13.75	12.39	12.36
^o d		17.30	17.31	16.83	16.86
(psi)		22.16	21.46	21.03	22.19
Base		24.54	25.30	22.26	22.53
θ		30.73	31.05	30.80	30.00
(psi)		38.35	37.60	37.29	39.20
Subgrade		12,900	12,500	12,800	12,900
M _R		12,200	11,800	12,000	12,600
(psi)		11,700	11,000	11,000	12,000
Base		20,800	16,500	24,700	30,300
M		23,000	18,800	30,400	29,600
(psi)		24,600	19,300	32,700	33,000
AC		1,096,000	1,184,000	972,000	658,000
MR		1,140,000	1,327,000	552,000	819,000
(psi)		1,258,000	1,462,000	579,000	700,000
Applied	76.63	71.0	71.3	66.6	66.0
Stress	108.83	95.7	95.9	91.0	93.3
(psi)	144.39	129.2	125.8	121.8	127.1
Pavement Applied Surface Stress Tempera- (psi) ture (°F)	34	42	48	09	49
Date	01/10/84	02/21/84	03/01/84	03/09/84	03/21/84

SR 172, MP 2.0 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit. Table 11.

SR 172, MP 21.4 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses Stress Relationships for each Site Visit. Table 12.

	Subgrade Stress Relationship	$10,605\theta^{0.119}$ $r^2 = 0.978$	11,365 ₉ 0.110 r ² = 0.906	13,0669 $^{0.047}$ $r^{2} = 0.298$	$10,1720^{0.127}$ $r^2 = 0.682$	12,656 ⁰ .120		$11,0850.064$ $r^2 = 0.974$	$10,6920$ 0.095 $r^2 = 0.996$	13,360 ₀ 0.012 r ² = 0.729
edch Site Visit.	Base Stress Relationship	1,025 θ 0.708 $r^2 = 0.976$	$34,790\theta^{-0.235}$ $r^2 = 0.487$	$3,149\theta^{0.410}$ $r^2 = 0.312$	8,559 ₀ 0.210 r ² = 0.896	15,719⊕ ^{0.226}		$1,699\theta^{0.422}$ $r^2 = 0.781$	$9,3660.092$ $r^2 = 0.850$	$4,718\theta^{0.321}$ $r^2 = 0.884$
	Subgrade ⊖ (psi)	16.05 23.08 31.24	13.45 21.74 31.07	14.46 23.42 28.54	14.17 20.86 29.14	20.37 27.86	13.39 18.14 23.80	17.89 23.39 31.79	15.92 22.22 30.77	16.04 21.24 28.82
Kelationships for	Base ⊖ (psi)	22.51 33.57 46.25	19.95 31.25 45.17	20.72 33.49 42.85	21.18 30.88 43.33	37.99 53.60	21.20 28.18 35.92	23.53 31.69 42.95	22.99 31.99 44.92	23.30 31.02 42.26
stress	Subgrade M _R (psi)	14,700 15,500 15,900	15,000 16,200 16,400	14,700 15,600 15,000	14,000 15,500 15,300	18,200 18,900	34,800 34,000 31,900	13,300 13,600 13,800	13,900 14,400 14,800	13,800 13,900 13,900
Modull, Stresses	Base M _R (psi)	9,100 12,900 15,100	18,100 13,800 15,100	11,900 10,300 17,400	16,500 17,100 19,200	35,800 38,700	115,500 125,300 129,900	6,200 7,900 8,000	12,600 12,700 13,400	12,700 14,800 15,400
Resilient Mod	AC M _R (psi)	2,146,000 2,500,000 2,500,000	3,000,000 3,000,000 3,000,000	2,714,000 2,000,000 2,500,000	2,586,000 3,000,000 3,000,000	1,500,000	3,500,000 3,500,000 2,500,000	2,614,000 2,886,000 2,850,000	2,785,000 2,870,000 2,570,000	2,623,000 3,000,000 3,000,000
	Applied Stress (psi)	55.35 85.59 118.63	56.87 83.83 121.45	54.74 79.68 115.78	58.28 85.28 122.80	88.0 121.51	72.28 102.30 140.82	63.8 86.9 118.1	62.6 86.8 117.6	62.6 87.9 120.4
	Pavement Surface Temper- ature (°F)	50	38	44	34	75	34	38	40	39
	Date	02/24/83	03/03/83	03/09/83	03/17/83	08/11/83	01/10/84	03/01/84	03/07/84	03/20/84

Table 13. SR 174, MP 2.3 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit.

14,400 16,300 16,000 16,000 17,900 15,700 18,900 15,400	
9,000	61.06 4,748,000 9,000
11,400	89.07 5,000,000 11,400
15,000	128.72 5,000,000 15,000
19,400	159.35 4,000,000 19,400
11,800	60.26 3,600,000 11,800
15,100	89.89 3,600,000 15,100
21,200	126.94 2,836,000 21,200
19,500	157.60 3,489,000 19,500

Table 13. SR 174, MP 2.3 - Results of BISDEF Analysis for Determination of Resilient Moduli, Stresses and Stress Relationships for each Site Visit (Cont.).

Subgrade Stress Relationship	$24.808 \sigma_{\rm d}^{-0.108}$ $r^2 = 0.750$		$18,399 \sigma_{\rm d}^{-0.078}$ $r^2 = 0.988$	$15,244 \sigma_{\rm d}^{0.018}$ $r^2 = 0.187$	13,752 $\sigma_{\rm d}^{0.090}$ $r^2 = 0.689$
Base Stress Relationship	$4,238\theta^{0.573}$ $r^2 = 0.999$		$1,3010.586$ $r^2 = 0.962$	$7,250\theta^{0.199}$ $r^2 = 0.372$	$16,3620.041$ $r^2 = 0.550$
Subgrade	9.10	11.45	9.85	10.35	9.69
°d	13.25	15.30	13.55	13.31	13.60
(psi)	19.31	19.68	17.90	18.55	18.18
Base	18.30	23.16	18.64	19.13	17.50
0	25.62	30.16	25.41	24.61	24.60
(psi)	36.75	38.59	33.55	33.96	32.66
Subgrade	19,300	50,800	15,400	15,800	16,000
M _R	19,300	48,000	15,000	16,200	16,800
(psi)	17,800	44,500	14,700	16,000	16,700
Base	22,400	165,900	7,100 9,000 10,000	13,700	18,500
M _R	27,200	170,300		12,600	18,400
(psi)	33,400	181,800		15,200	19,000
AC	1,308,000	600,000 165,900	817,000	709,000	789,000
M _R	2,000,000	600,000 170,300	820,000	960,000	893,000
(psi)	2,000,000	600,000 181,800	830,000	853,000	1,009,000
Applied	46.97	81.72	69.7	68.8	67.5
Stress	78.62	113.21	95.0	95.0	95.9
(psi)	123.52	154.91	126.5	129.4	132.8
Pavement Surface Temper- ature(°F)	. 92	34	38	38	40
Date	08/09/83	01/10/84	03/01/84	03/07/84	03/20/84

PSAD2A COMPUTER PROGRAM [10]

PSAD2A is a layered elastic computer program which calculates moduli, stresses and strains under single and dual tire loading conditions. The program uses an iterative approach to determine the moduli of the different layers. For this study, the program was used to calculate deflections and strains under a given load for the summer or strongest condition and the spring or weakest condition for each of the sites. This was done to determine the difference in strains and deflections between the two cases so that the spring load could be found which induced the same deflections and strains, and hence damage, as in the summer under maximum loading.

Several inputs are required for the program. Each layer must be characterized by:

- 1. Poisson's ratio,
- 2. dry density,
- 3. thickness,
- 4. stress relationship, and
- 5. an initial estimate of modulus for each layer.

Poisson's ratios for the individual layers were the same as those used in BISDEF (see Table 7). The dry density of the asphalt concrete was assumed to be 140 pcf $(2,400~{\rm kg/m^3})$, that of the bituminous surface treatment to be 125 pcf $(2,000~{\rm kg/m^3})$, and the dry densities of the soils were as measured in the field. Where field data was not available estimates were made based upon material types. The thicknesses of the layers were the actual thicknesses of the pavement components. The stress relationships were those developed from the BISDEF results. The asphalt concrete modulus or bituminous surface treatment modulus was that obtained for the site visit date analyzed as determined by the BISDEF computer program. Table 14 summarizes the inputs for PSAD2A for the six sites, and gives the dates of the two cases, strongest and weakest, analyzed for each site.

It should be noted that the subgrade layer in this program must be characterized as a fine-grained material (i.e., M_R decreasing with increasing deviator stress) or as a layer with a constant resilient modulus. Two sites, SR 172, MP 2.0-1.9 and SR 172, MP 21.4-21.0, had subgrades where modulus increased with increasing stress. To circumvent

Table 14. Inputs Used in PSAD2A.

Asphalt Concrete Stress or BST MR Relationship	$^{285,000}_{M_R} = 35,637_{\theta}^{0.226}_{-0.025}_{M_R} = 46,733_{\sigma_d}^{0.226}$	1,540,000 $M_R = 8,0380.450$ $M_R = 38,073 \sigma_d$	245,000 $M_R = 5,216\theta^{0.804}$ $M_R = 24,794$ σ_d	425,000 $M_R = 15,052\theta^{0.253}$ $M_R = 28,676 \sigma_d^{-0.604}$	1,200,000 $M_{R} = 2,7870.658$ $M_{R} = 21,904 \sigma_{d}$	1,300,000 $M_R = 4,6280^{0.398}$ $M_R = 26,576^{0.398}$	$M_{R} = 6,3930^{0.326}$	11
Poisson's Ratio	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35 0.35 0.45	0.35	0.35
Dry Density (pcf)	140 135 -	140 135 -	140 135 -	140 125 -	140 137 -	140 137 -	120	120
Thickness (inches)	2.6 14.0 °°	2.6 14.0 °	6.2 16.6 °°	6.2 16.6 °°	1.8 9.0 °	8.0.8	8.6	
Layer	ACP Base Subgrade	ACP Base Subgrade	ACP Base Subgrade	ACP Base Subgrade	BST Base Subgrade	BST Base Subgrade	Combined BST & Base	Combined RST & Base
Date	08/16/83	03/24/83	08/16/83	02/21/84	03/13/83	03/01/84	08/17/83	02/24/83
Site	SR 97 MP 183.48- 184.00		SR 2 MP 117.38- 117.62		SR 2 MP 159.6- 160.0		SR 172 MP 2.0-1.9	

Table 14. Inputs Used in PSAD2A (Cont.).

Stress Relationship	M _R = 15,7190.226 M _R = 12,6560.120	$M_{R} = 1,699\theta^{0.422}$ $M_{R} = 11,085\theta^{0.064}$	$M_{R} = 4,238^{0.573}$ $M_{R} = 24,808 \sigma_{d}$	$M_{R} = 1,3010^{0.586}$ $M_{R} = 18,399 \sigma_{d}$
Asphalt Concrete or BST M _R (psi)	1,500,000	2,800,000	1,800,000	822,000
Poisson's Tatio	0.35 0.35 0.40	0.35 0.35 0.40	0.35 0.35 0.45	0.35 0.35 0.45
Dry Density (pcf)	125 115 110	125 115 110	140 132 -	140 132 -
Thickness (inches)	1.5 9.0 212	1.5 9.0 212	1.7 10.3 ~	1.7 10.3 ~
Layer	BST Base Subgrade	BST Base Subgrade	ACP Base Subgrade	ACP Base Subgrade
Date	08/17/83	03/01/84	8/60/80	03/01/84
Site	SR 172 MP 21.4- 21.0		SR 174 MP 2.3-2.0	

this program requirement, the subgrade at those sites was characterized by a layer of infinite thickness, a constant modulus of 1,000,000 psi $(6,900,000~\text{KN/m}^2)$ and a Poisson's ratio of 0.45. In the program, the layer above the subgrade was characterized by the actual subgrade data and given a thickness of 212 inches (538.5~cm). To evaluate the effect of this, the program was rerun with a bottom layer modulus of 1,000 psi $(6,900~\text{KN/m}^2)$ and the same Poisson's ratio. No difference between outputted deflections, stresses, or strains were observed so this bottom layer was assumed to have no influence on the results.

For all sites the strongest case was found to be during the summer (the August site visit). At the SR 2, MP 159.6 site, however, the MR - θ and MR - σ_d relationships for that date were unrealistic with the k2 value of MR = k1 θ k2 for the base course equal to 1.473. Further, the subgrade relationship had a positive slope whereas all other site visits the subgrade stress relationship had a negative slope. Therefore it was decided to use the next strongest case where the asphalt concrete surface temperatures were similar. That turned out to be March 13, 1983.

The next question to be addressed was which loads would be analyzed. Since the vast majority of trucks on the highway use tubeless tires it was decided that those tire sizes would be used. Sizes 8-22.5, 9-22.5, 10-22.5, 11-22.5, 12-24.5, 14-17.5 and 16-22.5 were chosen for evaluation. These were considered to be the most common sizes on the road today. Only single tires on single axles were evaluated as these were considered to be the most critical cases. Next, the wheel loads had to be determined.

Summer Condition Tire Loads

For the summer cases, the loading condition was one where the maximum allowable load per tire would be input. This maximum was determined by The Revised Code of Washington (RCW) 46.44.042 which states: "Maximum gross weights - tire factor... it is unlawful to operate any vehicle upon public highways with a gross weight, including load, upon any tire concentrated upon the surface of the highway in excess of 550 lbs per inch tire width of such tire, up to a maximum width of 12 inches and for a tire having a width of 12 inches or more there shall be allowed a 20 percent tolerance above 550 lbs per inch width of such tire". Thus,

maximum loads were calculated by $550 \times 10^{-5} \times 10^{-$

Note that if the 16 inch tire is allowed to carry 660 lb. x tire width, the results would be an allowable load on the tire of 10,560 lbs (4,800 kg). On a single tire, single axle this would result in a gross axle weight of 21,120 lbs (9,600 kg) which exceeds the legal maximum of 20,000 lbs (9,000 kg). Thus, a maximum tire load of 10,000 lbs (4,500 kg) was assumed for the 16-22.5 tire.

It was also necessary to determine what tire pressure would be appropriate for use with these different tires sizes. According to work previously completed by Sharma, Hallin and Mahoney at the University of Washington [11], it was most accurate to use a variable radius, variable pressure analysis method rather than fixed radius or fixed pressure. Thus it was decided to use the recommendations of The Tire and Rim Association, Inc. on tire pressures for a given load for a given tire size. Table 16 gives the needed information for diagonal (bias) ply tires for trucks, buses and trailers used in normal highway service for tires mounted on 150 drop center rims.

The way Table 16 was used is as follows. For a given tire size, say 8-22.5, the table was entered in the "S" (for single tire) row. In this row the load closest to the maximum allowable load for an 8 inch (20 cm) tire = 4,400 lb (2,000 kg) was located. The tire pressure of that column was used in the analysis. In the example case the tire pressure was 105 psi. These pressures are also listed in Table 15.

Spring Condition Tire Loads

For the spring condition it was decided to run the following three cases:

- 1. the maximum load and tire pressure as used for the summer condition,
- 2. 75% of the maximum load and the corresponding appropriate tire pressure, and
- 3. 50% of the maximum load and the corresponding appropriate tire pressure.

Table 15. Tire Loads and Tire Pressures for the Summer Condition.

Tire Size	Tire Pressure (psi)	Load/Tire (lbs)
8-22.5	105	4,400
9-22.5	115	4,950
10-22.5	105	5,500
11-22.5	100	6,050
12-24.5	115	7,920
14-17.5	100	9,240
16-22.5	90	10,000

BUSSES AND TRAILERS USED IN NORMAL HIGHWAY SERVICE Table 16. DIAGONAL (BIAS) PLY TIRES FOR TRUCKS,

TIRES MOUNTED ON 15° DROP CENTER RIMS

TIRE AND RIM ASSOCIATION STANDARD

TABLE TTB-18

SINGLE (S) DUAL (D)

TIRE SIZE	2			TIRE	LOAD LIN	IITS (LBS.) (The pre	TIRE LOAD LIMITS (LBS.) AT VARIOUS COLD INFLATION (The pressure is minimum for the load)	JS COLD IN inimum for		PRESSURES (PSI)	(PSI)			
2	_	55	09	65	70	75	80	85	8	95	100	105	110	115
8-19.5	۵	2230	2350	2460(D)	2570	2680	2780(E)	2880	2980	3070(F)				
	S	2270	2410	2540	2680	2800(D)	2930	3060	3170(E)	3280	3400	3500(F)		
8-22.5	۵	2490	0292	2750(D)	2870	2990	3100(E)	3210	3320	3430(F)				
	S	2530	2680	2840	2990	3140(D)	3270	3410	3530(E)	3660	3780	3910(F)		
9-22.5	۵	2960	3120	3270	3410	3550(E)	3690	3820	3950(F)	4070	4200	4320(G)		
	S	3010	3190	3370	3560	3730	3890	4050(E)	4210	4350	4500(F)	4640	4790	4920 (G)
10-22.5	a	3510	0698	3870	4040(E)	4200	4360	4520(F)	4670	4820	4970(G)			
	S	3560	3770	4000	4210	4410	4610(E)	4790	4970	5150(F)	5320	5490	5670 (G)	
11-22.5	۵			4380	4580	4760(F)	4950	5120	5300 (G)	5470	5630	5800(H)		
	S			4530	4770	4990	5220	5430(F)	5640	5840	6040 (G)	6240	6430	6610(H)
11-24.5	a			4660	4870	5070(F)	5260	5450	5640 (G)	5820	0009	6170(H)		
	S			4820	5070	5310	5550	5780(F)	0009	6210	6430(G)	6630	6840	7030 (H)
12-22.5	Q			4780	4990	5190(F)	5390	5590	5780 (G)	2960	6150	6320 (H)		
	S			4940	5200	5450	5690	5920(F)	6140	6370	6590(G)	6790	7010	7200 (H)
12-24.5	a			2080	2300	5520(F)	5730	5940	6140 (G)	6330	6530	6720(H)		
	S			5240	5520	5790	6040	6290(F)	6530	0229	7000(G)	7220	7440	7660(H)

NOTE: Letters in parentheses denote Load Range for which Bold Face Loads are maximum.

IMPORTANT: For speed limitations, inflation requirements, and rim and wheel load restrictions, see pages 2-04 and 2-05.

GENERAL DATA SHOWN ON PAGE 2-26.
CAUTION — ALWAYS USE APPROVED TIRE AND RIM COMBINATIONS FOR DIAMETERS AND CONTOURS. SEE PAGE 2-29 FOR APPROVED TIRE AND RIM COMBINATIONS.

Table 16. DIAGONAL (BIAS) PLY (Continued) WIDE BASE TIRES FOR TRUCKS, BUSSES AND TRAILERS USED IN NORMAL HIGHWAY SERVICE

TIRES MOUNTED ON 15° DROP CENTER RIMS

TIRE AND RIM ASSOCIATION STANDARD

SINGLE (S) TABLE WBTB-1B DUAL (D)

		-	-	TIR	E LOAD L	IMITS (LB (The	TIRE LOAD LIMITS (LBS.) AT VARIOUS COLD INFLATION PRESSURES (PSI) (The pressure is minimum for the load)	RIOUS CC s minimu	JLD INFLA m for the	TION PRE load)	SSURES (PSI)			
	8	33	40	45	20	55	9	65	70	75	80	85	96	95	100
۵	2820	3080	3340	3570(D)	3800	4020	4220(E)	4430	4620	4810(F)	2000	5180	5360(G)		
S			3210	3500	3790	4060(D)	4320	4570	4800(E)	5030	5255	5470(F)	5680	2890	(5) 0609
۵	3600(D)	3930	4250	4560(E)	4850	5120	5390(F)	5650	2900	6150(G)					
S			4090(D)	4470	4830	5180(E)	5510	5820	6130(F)	6420	6710	6980(G)			
				5000(E)	5320	5620	5910(F)	6200	6480	6740(G)	7000	7250	7500(H)		
S						5680(E)	6040	6390	6720(F)	7040	7360	7660(G)	7950	8240	8520(H)
۵				5310	5640	5970	0229	6580	6870	7150	7430(H)				
S						9030	6410	6780	7130	7480	7810	8130	8440(H)		
				5800	6170	6520	0989	7190	7520	7820	8120(H)				
ွ						9629	7010	7410	06//	8170	8540	8890	9230(H)		
۵				2900	6270	6640	(5)0869	7310	7640	7960(H)	8260	8560	8850(J)		
S						0029	7130	7540	7930(G)	8310	8680	9040(H)	9390	9730	10060(J)
۵				6430	6850	7230	7610(G)	7980	8330	8680(H)	9010	9340	9650(J)		
S						7310	7780	8220	8650(G)	9070	9470	9860(H)	10240	10610	10970(J)
۵				6950	7390	7820	8230	8620	9010	9370(J)					
S						7900	8400	0688	9350	9800	10240	10650(J)			
١															

NOTE: Letters in parentheses denote Load Range for which Bold Face Loads are maximum. IMPORTANT: For speed limitations, inflation requirements, and rim and wheel load restrictions, see pages 2-04 and 2-05.

CAUTION — ALWAYS USE APPROVED TIRE AND RIM COMBINATIONS FOR DIAMETERS AND CONTOURS. SEE PAGE 2-29 FOR APPROVED TIRE AND RIM COMBINATIONS. GENERAL DATA SHOWN ON PAGE 2-27.

The tire pressures were determined through the use of Table 16 as described in the previous section. The spring condition loads and tire pressures are presented in Table 17. These conditions were chosen so that the strains determined by the summer conditions would fall in the range of strains obtained during the spring conditions and therefore an equivalent load could be found. This equivalent load would be the tire load in the spring which caused the same deflections and strains as the maximum load during the summer.

Determination of Equivalent Summer and Spring Loads

The outputs from PSAD2A which were of interest in both the summer and spring analyses were: the surface deflection (θ), the horizontal strain at the bottom of the asphalt concrete or bituminous surface treatment (ϵ_t), the vertical strain at the top of the base course (ϵ_{vb}), and the vertical strain at the top of the subgrade (ϵ_{vs}). These values for all analysis cases can be found in Appendix D.

As a check on the accuracy of the stress relationships determined by BISDEF, a comparison was made between the PSAD2A predicted surface deflection and the surface deflection measured in the field. In order to get the best comparison, the PSAD2A stress and load radius closest to one measured in the field were used. Table 18 shows the results of the comparison. The deflections compared reasonably well.

Once the PSAD2A deflections and strains were calculated, the determination of the spring load which caused the same damage as the maximum allowable load during the summer could be computed. This was done using a plot such as the one shown in Figure 32. This plot is for SR 172, MP 21.4, tire size = 11-22.5. The plot was constructed as follows:

- surface deflection versus load was plotted for the three loads used in the spring analysis, and a curve fitted through the points,
- 2. ϵ_t , ϵ_{vb} and ϵ_{vs} versus load were plotted for the same three loads, and similar curves were drawn.

These lines are labeled as in the figure.

The next step was to determine the spring load which would result in the same deflections and strains as the summer case. This was accomplished by entering the plot on the vertical axis with the summer deflec-

Table 17. Tire Loads and Tire Pressures for the Spring Condition.

Percent of Maximum Load	Tire Size	Tire Pressure (psi)	Load/Tire (1bs)
100	8-22.5	105	4,400
	9-22.5	115	4,950
	10-22.5	105	5,500
	11-22.5	100	6,050
	12-24.5	115	7,920
	14-17.5	100	9,240
	16-22.5	90	10,000
75	8-22.5	80	3,300
	9-22.5	75	3,712
	10-22.5	70	4,125
	11-22.5	65	4,538
	12-24.5	80	5,940
	14-17.5	100	6,930
	16-22.5	75	7,500
50	8-22.5	55	2,200
	9-22.5	55	2,475
	10-22.5	55	2,750
	11-22.5	65	3,025
	12-24.5	65	3,960
	14-17.5	65	4,620
	16-22.5	55	5,000

Table 18. Comparison Between PSAD2A Predicted and Actual Field Surface Deflections.

	Field 6 (x 10 ⁻³ in.)	13.4	13.6	24.0	17.5	30.4	39.2	57.4	72.8	24.5	43.2	21.2	38.0
	Field Stress (psi)	104	76.5	113.8	94.1	84.0	95.9	56.8	72.7	88.0	86.9	78.6	95.0
ace perfections.	PSAD2A Predicted δ in.)	11.4	12.0	18.0	19.4	34.8	38.8	55.9	83.6	26.1	45.9	25.6	36.6
Actual Fleid Surface Dellections.	PSAD2A Load Radius (inches)	5.42	5.64	4.68	5.95	5.95	5.95	5.38	5.64	5.95	5.95	5.95	5.95
	PSAD2A Stress (psi)	100	75	115	06	06	06	25	75	06	06	06	06
	Season	Summer	Spring	Summer	Spring	Summer	Spring	Summer	Spring	Summer	Spring	Summer	Spring
	Site	SR 97	MF 183.48- 184.00	SR 2	MP 117.38- 117.62	SR 2	MP 159.6- 160.0	SR 172	MP 2.0-1.9	SR 172	MP 21.4- 21.0	SR 174	MP 2.3-2.0

Note: The FWD load radius was a constant of 5.91 inches.

Figure 32. Plot of PSAD2A Results for Determination of Allowable Spring Loads (SR 172 - MP 21.4, 11-22.5 tire size).

tion, ϵ_t , ϵ_{vb} or ϵ_{vs} value. A horizontal line was then drawn across to intersect the appropriate curve. At the intersection points vertical lines were drawn down to intersect the horizontal or "tire load" axis (refer to Figure 32). These values were the tire loads which would result in the same deflection and strains as obtained during the summer under maximum allowable loading. In other words, these loads were the loads that would cause the same damage to the pavement structure in the spring as the maximum allowable load did during the summer when the pavement structure was strongest.

The allowable spring wheel loads as determined by this analysis are presented in Tables 19 through 24. The allowable spring load for each tire size considered for the different criteria evaluated are listed as well as the percent of the legal load for a given tire which this load represents. The plots used to obtain these values (like the plot in Figure 32) are presented in Appendix D.

It should be noted that for the SR 172, MP 2.0-1.9 only two criteria were evaluated, σ and $\epsilon_{\text{VS}}.$ This was due to the fact that the surface course and base were combined into one layer. Hence, ϵ_{t} and ϵ_{Vb} values did not exist, at least not in the traditional sense.

In addition to the analysis described above, one other condition was studied. This condition was that of keeping the tire pressure at a constant value of 95 psi and varying the load and load radius. The value of 95 psi was chosen as this was the average value found during a study at the Fife Way Station [11]. Two sites were chosen for this analysis, SR 174, MP 2.3-2.0 and SR 172, MP 21.4-21.0. The same tire loads, etc. were analyzed as described for the variable pressure, variable radius evaluation. The raw data is contained in Appendix D and the results are shown in Tables 25 and 26. The most critical criterion is the vertical strain in the base for both test sites regardless of tire pressure; however, the use of 95 psi reduces the spring allowable loads by about 10 percent. In other words, with the lower tire pressures used in Tables 23 and 24, the maximum legal loads would be reduced by about 40 to 50 percent. Using 95 psi tire pressure, the maximum legal loads would be reduced about 50 to 60 percent.

SR 97, MP 183.48 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load. Table 19.

1							
% of Maximum Legal Load	06	92	06	68	85	85	85
Spring Allowable Load for Evs	(1bs) 3,980	4,580	4,950	5,400	6,775	7,850	8,470
% of Maximum Legal Load	124	121	110	104	100	77	74
Spring Allowable Load for evb	(1bs) 5,440	5,980	080,9	6,230	7,950	7,100	7,450
% of Maximum Legal Load	130	123	107	102	97	65	09
Spring Allowable Load for Et	5,740	6,100	5,900	6,200	7,660	6,020	5,990
% of Maximum Legal Load	98	87	89	80	80	74	73
Spring Allowable Load for ô	3,775	4,325	4,900	4,875	6,300	6,840	7,320
Maximum Legal Tire Load (1bs)	4,400	4,950	5,500	6,050	7,920	9,240	10,000
Tire Size	8-22.5	9-22.5	10-22.5	11-22.5	12-24.5	14-17.5	16-22.5

 δ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete ϵ_{vb} = vertical strain at the top of the base ϵ_{bs} = vertical strain at the top of the subgrade

Table 20, SR 2, MP 117.38 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load.

	Τ						
% of Maximum Legal Load	118	119	114	114	116	104	>112
Spring Allowable Load for Evs	5,200	5,910	6,300	6,880	9,200	6,600	>11,200
% of Maximum Legal Load	124	122	119	112	116	>108	>112
Spring Allowable Load for Eyb (lbs)	5,460	6,020	6,570	6,770	9,200	>10,000	>11,200
% of Maximum Legal Load	136	128	125	116	120	>108	>112
Spring Allowable Load for εt (lbs)	6,000	6,320	006,9	7,000	9,500	>10,000	>11,200
% of Maximum Legal Load	122	110	113	112	108	102	E
Spring Allowable Load for ô (lbs)	5,390	5,460	6,230	6,770	8,550	9,380	11,100
Maximum Legal Tire Load (1bs)	4,400	4,950	5,500	6,050	7,920	9,240	10,000
Tire Size	8-22.5	9-22.5	10-22.5	11-22.5	12-24.5	14-17.5	16-22.5

Table 21. SR 2, MP 159.6 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load.

			_				_	-		
	% of Maximum Legal Load		100	00	3	85	86	96	5 5	c 96
	Spring Allowable Load for Evs	(lbs)	4,400	4.920	0000	080.6	5,900	7.600	8 790	9,560
c	% of Maximum Legal Load		83	85	84	-	82	78	65	89
	Spring Allowable Load for Evb	(sg I)	3,670	4,190	4 600	200	4,990	6,180	6,020	6,760
	% of Maximum Legal Load		93	93	91		96	06	72	78
	Spring Allowable Load for Et	(50.1)	4,080	4,600	5,020	C C	5,830	7,120	6,640	7,820
	% of Maximum Legal Load		<u>_</u>	93	92	C	36	06	88	88
	Spring Allowable Load for δ (lbs)	4 020	0106	4,600	5,050	5 570	2	7,170	8,115	8,900
	Maximum Legal Tire Load (1bs)	4,400	L	4,950	2,500	6,050		7,920	9,240	10,000
	Tire Size	8-22.5	(9-22.5	10-22.5	11-22.5		12-24.5	14-17.5	16-22.5

 δ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete $\epsilon_{\rm Vb}$ = vertical strain at the top of the base $\epsilon_{\rm Vs}$ = vertical strain at the top of the subgrade

Table 22. SR 172, MP 2.0 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load.

Tire Size	Maximum Legal Tire Load (lbs)	Spring Allowable Load for & (lbs)	% of Maximum Legal Load	Spring Allowable Load for Evb (lbs)	% of Maximum Legal Load
8-22.5	4,400	1,820	41	2,330	53
9-22.5	4,950	2,180	44	2,720	55
10-22.5	5,500	2,400	44	2,980	54
11-22.5	6,050	2,450	40	3,200	53
12-24.5	7,920	3,800	48	4,400	56
14-17.5	9,240	4,400	48	4,920	53
16-22.5	10,000	4,680	47	5,300	53

 $[\]delta$ = surface deflection $\epsilon_{V\,b}$ = vertical strain at the top of the subgrade

SR 172, MP 21.4 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load. Table 23.

									
% of Maximum Legal Load		100	100	3	86	86	9 9	ς α	6 O6
Spring Allowable Load for Evs (1bs)		4,400	4.930) (5,3/5	5,900	7.500	8,220	9,050
% of Maximum Legal Load		54	55	C	000	38	45	37	33
Spring Allowable Load for Evb	(50.1)	2,400	2,730	2 750	00,41	2,290	3,600	3,460	3,320
% of Maximum Legal Load		85	85	80		83	70	52	43
Spring Allowable Load for εt	, ,	3,600	4,230	4,375		2,000	5,530	4,830	4,300
% of Maximum Legal Load	5.1	t D	55	54	ļ	25	53	51	50
Spring Allowable Load for δ (1bs)	2 400	000	2,720	2,980	(L	3,150	4,210	4,730	5,000
Maximum Legal Tire Load (1bs)	4.400		4,950	5,500	020	000,0	7,920	9,240	10,000
Tire Size	8-22.5		9-22.5	10-22.5	11_22 E	0.77-11	12-24.5	14-17.5	16-22.5

 δ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete $\epsilon_v b$ = vertical strain at the top of the base $\epsilon_v s$ = vertical strain at the top of the subgrade

SR 174, MP 2.0 - Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load. Table 24.

1							
% of Maximum Legal Load	111	110	109	109	107	110	103
Spring Allowable Load for evs (lbs)	4,900	5,460	000,9	6,590	8,500	10,200	10,330
% of Maximum Legal Load	7.1	70	29	64	09	20	48
Spring Allowable Load for Evb	3,130	3,490	3,700	3,850	4,780	4,670	4,780
% of Maximum Legal Load	108	110	102	86	97	74	77
Spring Allowable Load for Et	4,750	5,440	2,600	2,900	7,650	008,9	7,700
% of Maximum Legal Load	17	70	69	69	69	29	29
Spring Allowable Load for δ (1bs)	3,140	3,490	3,810	4,200	5,500	6,180	6,720
Maximum Legal Tire Load (1bs)	4,400	4,950	2,500	6,050	7,920	9,240	10,000
Tire Size	8-22.5	9-22.5	10-22.5	11-22.5	12-24.5	14-17.5	16-22.5

 δ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete $\epsilon_v b$ = vertical strain at the top of the base ϵ_{vs} = vertical strain at the top of the subgrade

SR 172, MP 21.4 - Constant 95 psi Tire Pressure Analysis, Spring Allowable Loads and Corresponding Percent of the Maximum Legal Load. Table 25.

ļ		-							
% of Maximum Legal Load		100	100) -	א	96	93	91	Üb
Spring Allowable Load for E _{VS}	(1bs)	4,400	4.950	2, 20, 0	0,400	5,800	7,400	8,390	000.6
% of Maximum Legal Load		43	42	38	3	36	38	26	30
Spring Allowable Load for Evb	(sgi)	1,910	2,100	2,100		7,180	3,060	2,450	3,000
% of Maximum Legal Load		89	29	09	ų u	2	8	32	34
Spring Allowable Load for E	(50.0	3,000	3,300	3,300	3.400	0000	0,00,0	3,000	3,400
% of Maximum Legal Load	5.2	70	52	51	51	ŗ.	2	48 8	48
Spring Allowable Load for & (1bs)	2.280	501	2,550	2,800	3,080	3.960		4,400	4,810
Maximum Legal Tire Load (lbs)	4,400		4,950	5,500	6,050	7,920	0 240	0.440	10,000
Tire Size	8-22.5		9-6.5	10-22.5	11-22.5	12-24.5	14-17.5		9.77-91

 $[\]delta$ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete $\epsilon_v b$ = vertical strain at the top of the base $\epsilon_v s$ = vertical strain at the top of the subgrade

SR 174, MP 2.0 - Constant 95 psi Tire Pressure Analysis, Spring Allowable Loads and Corresponding Percent of Maximum Legal Load. Table 26.

% of Maximum Legal Load		112	111		_	111	107	104	103
Spring Allowable Load for Evs	(IDS)	4,950	5.500	2, 5, 5	0,120	6,710	8 480	004.6	10.280
% of Maximum Legal Load		19	09	. 2	\c	57	50	44	. 4
Spring Allowable Load for Evb	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2,700	2,960	3 105	03-60	3,460	3.960	4.100	4,300
% of Maximum Legal Load		109	106	100	2	06	77	71	75
Spring Allowable Load for Et	(501)	4,800	5,270	5.500		5,480	6,100	6,525	7,500
% of Maximum Legal Load		70	69	69	•	89	89	99	99
Spring Allowable Load for & (1bs)	(22.)	3,060	3,400	3,820	•	4,100	5,400	6,150	6,620
Maximum Legal Tire Load (1bs)	004	4,400	4,950	5,500		6,050	7,920	9,240	10,000
Tire Size	8-22 5	6.17	9-22.5	10-22.5	ז ייי רר	C.22-11	12-24.5	14-17.5	16-22.5

 δ = surface deflection ϵ_t = horizontal strain at the bottom of the asphalt concrete ϵ_{vb} = vertical strain at the top of the base ϵ_{vs} = vertical strain at the top of the subgrade

LOAD ANALYSIS RESULTS

The data in Tables 19 through 26 indicate the surface deflection (δ) and the vertical strain at the top of the base (ϵ_{Vb}) are the critical parameters for determining the allowable spring load per tire. It is obvious that the sites with the most critical conditions are the two test sites on SR 172. This was expected as this state route often has load restrictions placed on it whereas load restrictions are normally not placed on the other test sites. It is also apparent that SR 2, MP 117.38 (Sunnyslope) was weakest in the summer. This may have been due to the poor asphalt concrete condition at the site coupled with the 990F (37°C) temperature on the day of testing in August 1983. Table 27 shows a summary of the results, noting the critical criterion, spring allowable load, and percent of maximum legal load, for the six test sites.

Based on the results in Table 27, forty percent of the maximum legal load appears to be the lower cut-off for the most critical case. However, test sites located on routes such as SR 97 and SR 2 show that 60 to 85 percent of the maximum legal loads give equivalent pavement response to the summer baseline condition. Given the observed and expected variation among the test sites (and it is reasonable to expect similar variations on other routes in the area), a load restriction policy can be formulated by at least two approaches:

- 1. <u>Restrictive</u>: load restrictions are a function of the pavement responses on the weakest routes (such as SR 172 and 174).
- 2. <u>Variable</u>: load restrictions are tailored to each individual route based on the pavement response as compared to summer conditions (as illustrated by the range of percentages shown in Table 27.) An example of this approach is illustrated in Reference 13 (Alaska DOTPF report).

Currently, there are major difficulties associated with a load restriction policy based on Item 2 above due to the necessary enforcement (both personnel, equipment and weight enforcement sites). Thus, it is necessary to continue at this time a reasonable restrictive policy. Therefore, a restrictive load policy that applies to the weaker routes a blanket 60 percent reduction from the allowable legal load is recommended. Table 28 shows a comparison between the existing load restrictions and the new proposed restrictions. It must be noted that

Table 27. Summary of the Critical Criteria and Corresponding Spring Allowable Load for Each Tire Size Modeled.

Tire Size	Site	Critical Criterion for Each Site	Spring Allowable Load (lbs)	% of Maximum Legal Load
8-22.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	δ εt εVB εVB εVB	3,775 5,200 3,670 1,820 2,400 3,130	86 118 83 41 (critical) 54 71
9-22.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	δ δ ε δ ^ε VB ε VB	4,325 5,460 4,190 2,180 2,730 3,490	87 110 85 44 (critical) 55 70
10-22.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	δ δ ε νΒ ε νΒ	4,900 6,230 4,600 2,400 2,750 3,700	80 113 84 44 (critical) 50 67
11-22.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	δ δ ε δ VB ε VB	4,875 6,770 4,990 2,450 2,290 3,850	80 112 82 40 38 (critical) 64
12-24.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	δ δ δ ^ε VB ^ε VB	6,300 8,550 6,180 3,800 3,600 4,780	80 108 78 48 45 (critical) 60
14-17.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	εt δ ενΒ ενΒ ενΒ	6,020 9,380 6,020 4,400 3,460 4,670	65 102 65 48 37 (critical) 50
16-22.5	SR 97, MP 183.48 SR 2, MP 117.38 SR 2, MP 159.6 SR 172, MP 2.0 SR 172, MP 21.4 SR 174, MP 2.0	εt εVB εVB εVB	5,990 11,100 6,760 4,680 3,320 4,780	60 111 68 47 33 (critical) 48

Table 28. Comparison of the Current and Proposed Load Restrictions.

Proposed Load Restriction	Gross Load Each Tire (1bs)	1,800	2,000	2,200	2,400	3,200	3,700	4,000
Pro Load Re	Tire Width	8	6	10	=	12	14	16
Severe Emergency Load Restriction	Gross Load Each Tire (1bs)	1,800	1,900	2,250	2,750	3,000	3,000	3,000
Severe E Load Res	Tire Width	8-22.5	9-22.5	10-22.5	11-22.5 11-24.5	12-22.5	14-17.5	16-22.5
Emergency Load Restriction	Gross Load Each Tire (lbs)	2,250	2,800	3,400	4,000	4,500	4,500	4,500
Eme Load Re	Tire Width	8-22.5	9-22.5	10-22.5	11-22.5	12-22.5 12-24.5	14-17.5	16-22.5

the FWD and associated analysis provide an excellent mechanism for individual route load restriction polices if needed in the future.

If one looks at the case of the 95 psi constant pressure analysis, the vertical strain at the top of the base becomes even more critical however only at the larger tire sizes (14 and 16 in.) do the values fall much below the 40 percent of maximum allowable load value. Thus, even based on these findings, the proposed load restrictions are reasonable.

CRITERION FOR ESTABLISHING WHEN TO APPLY LOAD RESTRICTIONS

A basic issue which was addressed in the study was when to establish load restrictions on a specific highway (assuming that load restrictions would be necessary). One criterion which provides certainty as to the need for load restrictions is the use of deflection measurements. Such measurements can be obtained with the FWD, Benkelman Beam, or other deflection measuring devices. Unfortunately, for the near future, it will be difficult for WSDOT equipment and/or personnel to be at all the necessary locations during the critical months of January, February, and March. An alternative approach is to use temperature data which suggests the depth of thaw in a pavement and hence if it is near or in the "critical period".

Figure 33 was prepared from calculating the depth of thaw for various thaw indices by use of the modified Berggren equation as shown below [12]:

$$x = \lambda \sqrt{\frac{48k_{avg} n TI}{L}}$$

where: x = depth of thaw (ft),

 $_{\lambda}$ = dimensionless coefficient which corrects formula for neglected effects of volumetirc heat,

n = conversion factor for air thawing index to surface thawing
index,

TI = air thawing index (°F·days),

L = latent heat (BTU/ft 3).

The pavement structure was assumed to be homogeneous and composed of either a coarse-grained or fine-grained soil (fixed dry densities of 130

Figure 33. Air Thawing Index vs. Depth of Thaw for Thin Asphalt Surfaced Pavements

and 100 pcf, respectively). An n = 1.5 was assumed (dark asphalt surface) along with λ = 0.7 for the fine-grained soil and λ = 0.6 for the coarse-grained soil (based on calculations of λ for Washington and Oregon which represent several hundred locations). The pavement surface thickness was assumed to have a negligible effect on the depth of thaw (an assumption quite valid for bituminous surface treatments but less so for increasing thicknesses of asphalt concrete). As shown in Figure 33 the depth of thaw for equal thawing indices is clearly greater for coarse-grained soils as opposed to fine-grained. Normally, it is reasonable to expect that the upper portions of all WSDOT pavement structures will behave as a coarse-grained soil. Thus, at an air TI=30 the depth of thaw will be about 12 in and at a TI=50 about 15 in. For most pavement structures this would result in the surface and base courses being thawed but not necessarily all of the subgrade.

To further examine the above approach, the test sites used in the study and previously described were reviewed. Specifically, on those dates for which FWD deflection basins were obtained during January through early March 1984, the temperature conditions were summed prior to the deflection testing date. The results of this review are shown in Table 29 for each of the test sites. The results suggest that an air thawing index of about 30 to 50 results in an unfrozen state (as modeled by the FWD deflection basins and the BISDEF computer program). This generally agrees with the estimated depth of thaws shown in Figure 33. Thus, district personnel can tentatively adopt a TI \simeq 30 to indicate pavement structures approaching a "critical condition" and a TI \simeq 50 to indicate pavement structures in a "critical condition". Obviously, such a criterian based on temperature data will vary from site to site but the field data suggests that the recommended thawing index is reasonable.

An air thawing index of 30 can be achieved within <u>one day</u> (unlikely however) if the mean daily temperature is $62^{\circ}F$ (i.e., $62^{\circ}F - 32^{\circ}F = 30^{\circ}F - 32^{\circ}F$) and $62^{\circ}F - 32^{\circ}F - 32^{\circ}F$ (10 days) = $30^{\circ}F - 32^{\circ}F$. The district peronnel at the various maintenance offices throughout a district currently record daily high/low temperatures. Thus, the mean daily temperatures based on an average of the high and low temperatures can be accumulated. When the mean daily temperature is above $32^{\circ}F$ consistently and accumulatively approaches $30^{\circ}F$ to $50^{\circ}F - 32^{\circ}F$.

Table 29. Summary of Freezing and Thawing Indices Preceding Deflection Test Dates.

Test Site	Deflection Test Date	Preceeding Time Period	Freezing Index	Thawing Index	Base Course State
SR 97 (MP 183.48)	- 01/11/84 - 01/31/84 02/21/84	Prior to 1/3 1/3 thru 1/11 1/12 thru 1/23 1/24 thru 1/31 2/1 thru 2/21	555 - 164 - 0	- 34 - 21 0	- Frozen - Marginally Frozen Unfrozen
SR 2 (MP 117.38)	- 01/11/84 - 01/31/84 02/21/84	Prior to 1/5 1/5 thru 1/11 1/12 thru 1/23 1/24 thru 1/31 2/1 thru 2/21	441 - 108 - -	- 39 - 46 50	- Marginally Frozen - Frozen Unfrozen
SR 2 (MP 159.6)	01/10/84 - 02/21/84	Thru 1/10 1/11 thru 1/23 1/24 thru 2/21	566 166 -	- - 60	Frozen - Unfrozen
SR 172 (MP 2.0 and MP 21.4)	01/10/84 - - - 03/01/84	Thru 1/10 1/11 thru 1/23 1/24 thru 2/1 2/2 thru 2/14 2/15 thru 2/29	564 181 - 24 -	- 34 - 19	Frozen - - - Unfrozen
SR 174 (MP 2.3)	- 01/10/84 - 03/01/84	Thru 1/3 1/4 thru 1/10 1/11 thru 1/23 1/24 thru 3/1	375 - 121 -	- 26 - 103	- Frozen - Unfrozen

days, the need for load restrictions is likely (again, if required for a specific pavement structure)

CRITERION FOR DURATION OF LOAD RESTRICTIONS

The available data from the test sites were used in developing a criterion for how long to apply load restrictions (if required at all). The most probable critical period date generally fell within a two week range (last week of February through the first week of March). Further, once the critical period is reached, it appears that about two weeks (at a minimum) is required for the pavement structure to overcome some of the low stiffness condition associated with the critical period. However, such conditions are quite site specific as one would expect. At best once load restrictions are applied, the two week load restriction application period is only suggested as a "rule-of-thumb". Clearly, the "best" method to determine the continuing need for load restrictions (or lack of) is the use of the FWD (or in general any kind of pavement surface deflection).

Due to the inherent variability of each pavement structure, no single item of $\underline{\text{in}}$ $\underline{\text{situ}}$ equipment appears to be completely adequate for assessing the $\underline{\text{need}}$ for load restrictions. Only equipment such as the FWD meets all the needed requirements for making such evaluations (at least at this time).

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The following conclusions are warranted:

- 1. The Falling Weight Deflectometer (FWD) is an excellent device for collecting the necessary information required to evaluate the structural capacity of pavements. Further, Benkelmen Beam and FWD maximum deflections correlated well; however, the deflection basins obtainable with the FWD provide significantly improved ability to analyze the pavement structure.
- 2. For the field test sites which normally require seasonal load restrictions (SR 172 sites and to a lesser extent SR 2 (MP 159.6)), the base course moduli vary more than the subgrade moduli. In fact, the subgrade moduli are relatively stable throughout the year (except when frozen). The base course weakness is due to excessive moisture available during the thawing period. The sources of the moisture include both surface or lateral infiltration and thawing of ice; however, the relative contribution of each is unknown. The excessive moisture in the base course is exacerbated by either a still frozen subgrade and/or a low permeability subgrade soil (i.e., a water drainage path is temporarily reduced or eliminated).
- 3. Multilayered elastic analysis was used along with FWD data to characterize the materials in the pavement layers for each test site with time. Criteria were developed which essentially reduces the allowable loads for a "summer" condition to equivalent loads during the critical period ("spring thaw"). Based on this analysis for the more critical test sites, a reduction in legal loads of about 60 percent is required. A single load restriction table has been prepared as a function of tire size based on the analysis (refer to Table 28, Chapter IV). Further, the analysis reinforces the current WSDOT load restriction tables.
- 4. A criterion was developed which can be used to determine when load restrictions should be initiated on a pavement structure in need of such limitations (the criterion does not identify

which pavements require load restrictions). The criterion is based on thawing degree days and can be readily used by the various WSDOT maintenance offices which record daily high and low temperatures. Both field data and an analytical procedure suggest that pavements susceptible to weakening during the critical period will approach this condition after 30 thawing degree days have occurred and will be in the critical period after accumulating 50 thawing degree days. (one thawing degree day is equal to an average daily temperature of 1°F above freezing). Clearly, site specific deflection data is the single "best" criterion to use in assessing the need for load restrictions but this data can be expensive to obtain and difficult to get at the needed time. A temperature based criterion is the next best alternative (and least expensive).

- 5. Based on the limited duration associated with this study, the critical period for a pavement structure can be expected to start within a two week period (last week of February through the first week of March). Further, at a minimum, the duration of the critical period is about two weeks. At best the above beginning date range and duration of the critical period can only be used as a very approximate "rule-of-thumb".
- 6. Full legal loads and possibly loads in excess of legal limits should be encouraged when the pavement structures are frozen. This is the time that the various pavement layers have the highest moduli values and hence are better able to accommodate heavy loads.

RECOMMENDATIONS

The following recommendations are warranted:

- 1. The criterion to determine when to enforce load restrictions based on thawing degree days is recommended for trial use during the winter/spring of 1985.
- 2. Based on the analysis performed in this study, additional consideration for future maintenance/rehabilitation/reconstruction projects should be given to pavement base course subsurface drainage, base stabilization, or base gradation changes on

- those routes which experience significant seasonal strength variation.
- 3. WSDOT will benefit significantly if a systematic program is initiated to obtain FWD deflection basin data during the critical spring thaw period on WSDOT routes subject to significant ground freezing. This activity will further identify problem locations and enhance our collective understanding of this phenomenon.

REFERENCES

- 1. Whalen, K., "Load Restriction Determination Study, Final Report," WA-RD-40.1, Public Transportation and Planning Division, Washington State Department of Transportation, September 1980.
- 2. Cole, D.M., Irwin, L.H. and Johnson, T.C., "Effect of Freezing and Thawing on Resilient Modulus of a Granular Soil Exhibiting Nonlinear Behavior," Transportation Research Record 809, Transportation Research Board, Washington, D.C., 1981, p. 19-26.
- , "Asphalt Overlays and Pavement Rehabilitation," Manual Series No. 17, The Asphalt Institute, College Park, Maryland, November 1977.
- 4. Unpublished data produced by the Washington State Department of Transportation Materials Laboratory.
- 5. Hoffman, M.S. and Thompson, M.R., "Mechanistic Interpretation of Non-destructive Pavement Testing Deflections," Transportation Engineering Series No. 32, Illinois Cooperative Highway and Transportation Research Program Series No. 190, University of Illinois, Urbana-Champaign, Il, June 1981.
- 6. Whitcomb, W.G., "Surface Deflections and Pavement Evaluation -- Equipment and Analysis Techniques," Transportation Engineering Report 82-4, Transportation Research Institute, Oregon State University, Corvalis, OR, January 1982.
- 7. Remco Highway Products, "Bearing Capacity for Paved and Unpaved Surfaces: Roads, Streets, Runways," Dynaflect Technical Services.
- 8. Bush, A.J., III, "Nondestructive Testing for Light Aircraft Pavements, Phase II, Development of the Nondestructive Evaluation Methodology," Report No. FAA-RD-80-9-II, November 1980.
- 9. Keshavan, N. and Chang, C.Y., "Flexible Pavement Design and Management, Materials Characterization," Report 140, National Coopertive Highway Research Program, Highway Research Board, Washington, D.C., 1973.
- 10. Hicks, R.G., Swait, J.D. Jr., and Chastain, E.O., "Use of Layered Theory in the Design and Evaluation of Pavement Systems," Department of Civil Engineering Oregon State University, 3rd Edition, Corvalis, OR, January, 1978.
- 11. Sharma, J., Hallin, J., and Mahoney, J.P., "Evaluation of Present Legislation and Regulations on Tire Sizes Configurations and Load Limits, Research Report, Washington State Department of Transportation, Olympia, WA, July 1983.
- 12. _____, "Calculation Methods for Determination of Depths of Freeze and Thaw in Soils Emergency Construction," Technical Manual No. 5-892-6, Department of the Army, September 1966.

13. Stubstad, R. and Conner, B., "Prediction of Damage Potential on Alaskan Highways During Spring Thaw Using the Falling Weight Deflectometer," Research Report No. AK-RD-83-11, Alaska Department of Transportation and Public Facilities, Fairbanks, Alaska, August 1982.

APPENDIX A CALIBRATION OF RESISTIVITY GAUGES

APPENDIX A

CALIBRATION OF RESISTIVITY GAUGES

This appendix is used to describe the laboratory soil cell calibration procedure used to develop relationships between resistivity and subgrade moisture content. The data used to plot the curves as well as the calibration curves are also included.

CALIBRATION OF GAUGES FOR MOISTURE CONTENT

The procedure used for developing a calibration curve of resistivity versus subgrade moisture content is that recommended by Soiltest, Inc. It is as follows:

- 1. Use a box 2 inches high, 1 9/16 inches wide and 1 9/16 inches thick with a cover. The four sides and bottom are to be made of 20 x 200-mesh stainless steel screen (stainless is used because of its resistance to corrosion). There is a notch in the top rim of the box to pass the lead wires.
- 2. Weigh the box plus cover plus soil cell.
- 3. Place the soil cell vertically in the center of the box and pack air-dry soil around the cell to fill the box to within 1/4-inch of the top. The soil is to come from the location the soil cell is to occupy in the field, and should be packed uniformly in the box to its apparent field density. This will require some practice.
- 4. Weigh the filled box plus cover. The oven-dry weight of the soil is calculated by determining the air-dry moisture content of a duplicate sample of the same soil. The total weight of the box, including cover, soil cell, and oven-dry soil, now becomes the gross oven-dried weight. The oven-dry weight becomes the basis for soil-moisture determinations.
- 5. Half-submerge the filled box in distilled water until the soil is saturated. Then dry the outside of the box, cover it, and place it in a tightly closed chamber. This chamber can be made of a bell-jar resting on a flat plate. Wick-equipped beakers inside are filled with a saturated solution of lead nitrate Pb $(NO_3)_2$, to maintain the air at 98 percent relative humidity. The soil boxes can rest on a wire rack in the chamber. Insu-

- lated wires leading from the chamber make it possible to measure soil resistances while the soil boxes are inside.
- 6. Leave the box in the chamber overnight; then measure the soil-cell resistance, remove it from the chamber, and weigh it for moisture determination.
- 7. Expose the box to evaporation in the laboratory until its moisture content has dropped several percent; then replace it in the humidity chamber and leave it there overnight. Measure resistance and weigh it in the morning. This cycle of drying, resting in the chamber, and measurement is repeated until the soil is dry. Resistances must be corrected to 60°F. It is a good practice to wet and dry the soil in the box once or twice before taking resistance measurements. This permits a stable structure to develop in the soil. It is also advantageous to run the soil through more than one series of drying cycles because the characteristic moisture-log resistance curve is double-S shaped and in the first drying some important points along the curve may be missed.

The chart for correcting resistivities to 60°F (15.6°C) is present in Figure Al. Tables Al, A2, A3, A4, A5 and A6 are used to summarize the laboratory data obtained for plotting resistivity versus base or subgrade moisture contents for the three test sites. The curves are plotted in Figures A2 to A7. Tables A7 through A9 are used to present the results of the field resistivity measurements and the corresponding moisture contents. Table AlO is provided for SR 97 and shows only the field obtained resistivities.

Figure Al. Chart for Correcting Resistances to $60\ensuremath{^\circ}\text{F}$

Table Al. Laboratory Data for Moisture Content Calibration of SR 2, Sunnyslope Base Course.

Resistance Corrected to 60°F (ohms)	510 540 630 760 790 820 840 5800	6800 6900 7600 7800 8600 32000 170000
Temperature (°F)	65.0 65.0 65.0 65.0 65.0	65.0 65.0 66.4 66.6 69.8 70.0 71.2
Measured Resistance (ohms)	480 520 600 710 750 780 800 5500	6350 6450 7000 7200 7400 26000 130000
Moisture Content (%)	12.2 12.2 11.8 11.1 10.7 10.7 5.6	8.444.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
Weight of Water in Sample (gm)	17.11 16.87 16.27 15.34 15.14 14.74 7.73	6.57 6.34 5.71 5.07 3.96 3.88
Oven Dry Weight of Sample (gm)	138.10 138.10 138.10 138.10 138.10 138.10	138.10 138.10 138.10 138.10 138.10 138.10
Gross Wet Weight (gm)	213.71 213.47 212.87 211.94 211.74 211.34 204.33	203.17 202.94 202.31 202.23 201.67 200.56 200.48

Weight of container + soil cell = 58.5 gm

Table A2. Laboratory Data for Moisture Content Calibration of SR 2, Sunnyslope Subgrade.

Resistance Corrected to 60°F (ohms)	1,890 2,300 2,300 2,300 3,100 3,250 3,450 10,200 10,900 11,800 12,300 13,800 14,100 870,000
Temperature (°F)	73.8 73.8 73.2 73.2 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0
Measured Resistance (ohms)	1,600 1,800 1,950 2,400 2,400 2,700 2,800 2,800 8,700 8,700 8,900 9,000 10,750 11,325 12,000
Moisture Content (%)	1.6.1 1.6.1
Weight of Water in Sample (gm)	19.0 19.0 10.0 10.0 10.0 10.0 10.0 10.0
Oven Dry Weight of Sample (gm)	120.3 120.3 120.3 120.3 120.3 120.3 120.3 120.3 120.3
Gross Wet Weight (gm)	195.46 195.09 194.31 193.87 192.97 191.41 189.94 181.83 181.68 181.49 181.23 180.95 180.86

Weight of container + soil cell = 55.8 gm

Table A3. Laboratory Data for Moisture Content Calibration of SR 2, MP 159.6 Base Course.

(mg)	Oven Dry Weight of Sample (qm)	Weight of Water in Sample (qm)	Moisture Content (%)	Measured Resistance (ohms)	Temperature (°F)	Resistance Corrected to 60°F (ohms)
	(3)	(6)	0		r	(2000)
	149.0	3.3	8.0	780	75.8	320
	149.0	13.0	8.7	410	76.1	475
	149.0	12.3	8.3	510	76.2	009
	149.0	11.8	7.9	540	76.3	630
	149.0	11.3	7.6	089	76.6	810
	149.0	10.4	6.9	086	75.5	1,150
	149.0	•	6.3	1,180	74.5	1,400
	149.0	•	6.2	1,320	5.	1,600
	149.0	•	5.9	1,450	75.0	1,720
	149.0	•	5.5	1,700	74.6	2,050
	149.0	•	3.8	3,900	4	4,800
	149.0	5.2	3.5	4,300	72.4	2,300
	149.0	•	2.8	5,800	71.3	•
	149.0	•	2.8	000,9	71.6	•
	149.0	•	2.6	2,900	73.0	•
	149.0	•	2.6	000,9	72.4	7,200
	149.0	•	2.5	6,100	75.1	7,500
	149.0	•	2.4	7,300	73.0	000,6
	149.0	•	2.4	8,200	73.9	10,400
	149.0	•	2.2	14,000	72.6	•
	149.0	•	2.1	235,000	9.69	300,000

Weight of container and soil cell = 55.8 gm

Table A4. Laboratory Data for Moisture Content Calibration of SR 2, MP 159.6 Subgrade.

to	
Resistance Corrected t 60°F (ohms)	429 545 710 875 920 1,020 1,270 1,270 3,350 4,100 6,900 7,500 7,900 8,150 12,800 115,000
Temperautre (°F)	68.0 68.0 67.7 68.0 66.4 68.2 68.3 68.3 68.8 68.8 66.5 66.5
Measured Resistance (ohms)	440 570 730 900 900 1,080 1,170 1,310 2,250 3,500 4,400 7,400 7,900 7,900 8,300 13,750 130,000
Moisture Content (%)	0 0 0 0 8 8 8 8 7 7 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
Weight of Water in Sample (gm)	4.44.13.0 10.22.11.0 10.22.3.3 10.22.3.3 10.22.3.3 10.22.3.3 10.22.3.3 10.22.3.3
Oven Dry Weight of Sample (gm)	147.3 147.3 147.3 147.3 147.3 147.3 147.3 147.3 147.3 147.3
Gross Wet Weight (gm)	221.45 221.30 221.07 220.06 219.47 218.96 217.39 217.25 217.25 211.24 211.24 210.37 209.47 209.47

Weight of container + soil cell = 59.8 gm

Table A5. Laboratory Data for Moisture Content Calibration of SR 174 Base Course.

	Resistance Corrected to 60°F (ohms)	650 720 820 1,540 1,710 2,260 2,980 3,200 4,400 5,000 5,700 13,200 16,900 27,000
	Temperature (°F)	67.1 68.4 68.2 66.8 66.8 66.1 66. 66 66 63 63
+ Dase course.	Measured Resistance (ohms)	600 670 1,420 1,600 2,100 2,800 3,000 4,100 4,500 5,050 12,700 18,100 24,800
calibración di Sh 1/4 base course	Moisture Content (%)	8.888.7.7.82.2.2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
20110	Weight of Water in Sample (gm)	12.6 12.3 10.8 10.8 3.7 3.0 3.0 1.8
	Oven Dry Weight of Sample (gms)	147.51 147.51 147.51 147.51 147.51 147.51 147.51 147.51 147.51 147.51 147.51
	Gross Wet Weight (gms)	214.60 214.33 214.34 213.06 212.78 211.50 210.44 209.22 209.22 209.22 205.86 205.40 205.14 205.03 204.67 203.81

weight of container + soil cell = 54.5 gm

Table A6. Laboratory Data for Moisture Content Calibration of SR 174 Subgrade.

Resistance Corrected to 60°F (ohms)	570 880 1,270 1,440 1,510 1,560 10,500 14,600 14,600 18,000 18,000 15,000
Temperature (°F)	7.1.7 7.1.7 7.1.3 7.1.3 69.0 69.0 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2 7.1.2
Measured Resistance (ohms)	500 1,100 1,270 1,330 1,330 1,530 8,200 9,000 11,950 13,000 15,000 64,500 82,000
Moisture Content (%)	22.2 22.2 21.4 21.4 19.5 18.9 17.6 17.7 17.9 4.8 3.8 3.7
Weight of Water in Sample (gm)	29.8 28.1 28.1 24.8 23.1 17.9 6.8 6.5 6.5 4.9
Oven Dry Weight of Sample (gm)	130.8 130.8 130.8 130.8 130.8 130.8 130.8 130.8 130.8
Gross Wet Weight (gm)	215.27 214.63 213.59 210.28 209.59 203.36 202.41 192.30 192.04 191.77 190.62 190.46

Weight of container + soil cell = 54.7 gm

Figure A2. SR 2, Sunnyslope - Calibration Curve of Resistivity Versus Base Course Moisture Content.

Figure A3. SR 2, Sunnyslope - Calibration Curve of Resistivity Versus Subgrade Moisture Content.

Figure A4. SR 2, MP 159.6 - Calibration Curve of Resistivity Versus Base Course Moisture Content

Figure A5. SR 2, 159.6 - Calibration Curve of Resistivity Versus Subgrade Moisture Content.

Figure A6. SR 174, MP 2.0 - Calibration Curve of Resistivity Versus Base Course Moisture Content.

Figure A7. SR 174, MP 2.0 - Calibration Curve of Resistivity Versus Subgrade Moisture Content.

Table A7. SR 2, Sunnyslope-Field Soil Cell Resistivities and Corresponding Moisture Content.

Moisture Content (%)	5.4 3.7 7.8 9.1	3.8 16.8 17.4 2.9	3.6 3.75 8.2	3.8 17.3 16.75 2.9	3.7. 6.3 9.9	3.9 17.4 15.4 2.9
Resistivity Corrected to 60°F (ohms)	9,200 24,700 5,600 1,220	23,000 1,590 1,050 33,900	72,000 23,500 1,830	18,200 1,140 1,660 39,000	26,700 35,000 15,400 4,550	16,000 1,000 2,250 28,000
Measured Resistivity (ohms)	12,960 34,240 8,000 1,605	33,170 2,160 1,404 49,680	97,200 32,100 2,354	26,750 1,620 2,160 43,200	32,400 42,800 20,000 5,564	21,400 1,188 2,700 37,450
Correction Factor	1.08 1.07 1.00 1.07	1.07 1.08 1.08 1.08	1.08 1.07 1.00 1.07	1.07 1.08 1.08 1.08	1.08 1.07 1.00 1.07	1.07 1.08 1.08 1.08
Temperature (°F)	42 42 42 42	39 41 39	4 45 45 - 45	444 444 1	48 49 47 49	46 49 49
Cell No.	13 14 15	9 11 12	13 15 16	9 10 12	13 14 16	9 10 11
Date	02/23/83		03/04/83		03/18/83	

Table A7. Continued.

Moisture Content (%)	3.7 3.7 4.0 6.9	3.8 17.3 15.2 2.9	888. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3.9 12.8 7.7 2.9	4.2 5.2 15.3	4.6
Resistivity Corrected to 60°F (ohms)	31,000 35,000 13,900 3,500	18,000 1,100 2,350 31,000	56,000 51,000 32,000 9,500	15,200 3,100 5,600 28,000	12,500 9,500 2,300 830	10,800 - 18,400
Measured Resistivity (ohms)	37,800 42,693 18,000 4,280	23,540 1,296 2,808 38,880	34,560 29,960 21,000 6,420	10,700 2,160 3,780 18,360	21,600(f) 16,692(f) 3,700(f) 1,220	17,120 324,000(f) 275,400(f) 31,320
Correction Factor	1.08 1.07 1.00 1.07	1.07 1.08 1.08	1.08 1.07 1.00 1.07	1.07 1.08 1.08	1.08 1.07 1.00 1.07	1.07 1.08 1.08
Temperature (°F)	50 50 47 49	47 50 49 48	85 86 84	80 84 82	31.5 32 29.5 32	36 32 34
Cell No.	13 15 16	9 10 11	13	9 11 12	13 15 16	9 11 12
Date	03/24/83		08/11/83		01/11/84	

Table A7. Continued

Moisture Content (%)	4.0 4.3 7.6		4.0 5.5 11.9	5.2 3.7 3.1	6.5 9.7 16.7 11.8	4.7 17.0 15.3 3.1
Resistivity Corrected to 60°F (ohms)	14,500 12,000 2,500		14,000 9,000 1,900 600	9,500 31,500 16,500	7,000 3,900 1,700 630	10,400 1,440 2,300 18,100
Measured Resistivity (ohms)	24,840(f) 20,330(f) 16,800(f) 3,959(f)		23,220 14,445 2,950(f) 856	16,050 216,000(f) 56,700(f) 28,620(f)	10,260 5,564 2,425 835	16,960 2,214 3,510 30,240
Correction Factor	1.08 1.07 1.00 1.07	ground	1.08 1.07 1.00 1.07	1.07 1.08 1.08 1.08	1.08 1.07 1.00 1.07	1.07 1.08 1.08 1.08
Temperature (°F)	32 31.5 28 30	Leads frozen in gr	34 34 34 34	34 32 32	39.5 39 37 39	34 33 33.5 34
Cell No.	13 14 15	9 11 12	13 15 16	9 1 1 1 2 1 2 1	8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	9 10 11
Date	01/17/84		01/31/84		02/20/84	

Table A7. Continued

Date 02/29/84 03/06/84	Cell No. 13 14 15 10 11 12 13	Temperature (°F) 41 41 38.5 40.5 36.5 36.5 36.5	Correction Factor 1.08 1.07 1.08 1.08 1.08 1.08 1.08	Measured Resistivity (ohms) 11,070 7,597 6,250 1,755 14,850 2,916 5,832 2,916 5,832 29,430 10,500 7,750 7,750	Resistivity Corrected to 60°F (ohms) 7,800 5,300 4,300 1,300 2,050 4,100 18,200 8,400 6,200 6,200 5,100	Moisture Content (%) (%) 7.9 9.1 9.0 9.4 3.0 6.8 7.2
03/19/84	0 10 11 12 12 12	42 40 40 41 47 49 45 45 45 45 45 45	1.07 1.08 1.08 1.08 1.07 1.07 1.08	1,950 2,500 2,500 25,000 10,700 9,250 4,600 1,120 12,500 2,250 3,150 26,730	1,520 10,000 1,950 4,350 18,300 8,100 3,650 1,010 2,000 2,000	8.8 1.61 8.00 8.00 8.00 8.00 1.00 8.00 8.00 8.0

Table A8. SR 2, MP 159.6 - Field Soil Cell Resistivities and Corresponding Moisture Contents.

Moisture Content (%)	4.2 7.0 1.6	4.7 7.1 1.9 2.6	4.8 7.0 1.8 2.3	4.7 7.0 1.7 2.6	2.2 5.7 1.7 2.4	1.5
Resistivity Corrected to 60°F (ohms)	5,580 1,910 11,400 93,000	4,850 1,750 10,300 7,300	4,750 2,000 10,900 12,200	4,900 1,930 12,000 7,300	8,700 3,550 11,700 9,200	10,100
Measured Resistivity (ohms)	8,100 2,700 17,120 149,800	7,020 2,400 14,980 10,700	6,480 2,600 14,980 17,120	6,696 2,500 16,050 9,630	7,560 3,000 8,560 6,420	15,336 7,300(f) 22,470(f) 535,000(f)
Correction Factor	1.08 1.00 1.07 1.07	1.08 1.00 1.07	1.08 1.00 1.07	1.08 1.00 1.07	1.08 1.00 1.07	1.08 1.00 1.07 1.07
Temperature (°F)	38 38 38 38	40 39 88	42 - 43	43 44 45	70 72 78 82	38 30.5 29.5 31
Cell No.	- W # 4	- 0 w 4	-0m4	⊢0.W4	− 0 W 4	L 2 E 4
Date	02/24/83	03/03/83	03/17/83	03/24/83	08/10/83	01/10/84

Table A8. Continued.

Measured Content (%)	2.2 4.6 1.8	1.9 5.6 5.1	6.0 7.2 3.3 2.4	5.2 7.0 2.9 2.4	6.2 7.8 6.4
Resistivity Corrected to 60°F (ohms)	8,800 5,000 11,600	10,400 3,700 9,200 2,400	3,170 1,700 6,700 7,950	4,250 2,020 7,200 8,400	2,950 1,260 2,640 985
Measured Resistivity (ohms)	13,554 7,600 19,528(f) 428,000(f)	16,200 5,600 14,980 3,772(f)	4,698 2,475 10,326 12,358	5,800 2,900 10,000 11,400	3,750 1,680 3,300 1,180
Correction Factor	1.08 1.00 1.07 1.07	1.08 1.00 1.07 1.07	1.08 1.00 1.07	1.08 1.00 1.07	1.08 1.00 1.07
Temperature (°F)	37 36 32 31	36 - 32.5 31	36.5 35.5 35.5	38 38 39 40	42 42.5 43
Cell No.	L 2 E 4	L0.64	L0 K 4	-0.64	L 2 8 4
Date	01/31/84	02/22/84	03/01/84	03/07/84	03/20/84

Table A9. SR 174 - Field Soil Cell Resistivities and Corresponding Moisture Contents.

:::::::::::::::::::::::::::::::::::::::	Measured Resistivity Moisture Corrected to Content (ohms) (ohms)	119,900 77,000 4.0 172,800 109,000 3.8 129,600 83,000 4.0 86,400 57,000 1.1	109,000 73,000 4.0 151,200 100,000 3.8 108,000 71,000 4.0 75,600 50,500 1.1	87,200 60,000 4.1 29,600 90,000 3.9 70,200 49,500 4.2 64,800 47,000 1.1	81,750 59,500 4.1 110,160 79,000 4.0 64,800 48,000 4.2 57,240 44,000 1.1	34,880 45,000 4.2 43,200 57,000 4.1 23,760 33,500 4.4 31,320 49,500 1.1	50,140 32,000 4.4 31,320 18,500 4.7 296,000(f) -
corresponding Moisture contents	Correction Factor	1.09 1.08 1.08 1.08	1.09 1.08 1.08 1.08	1.09 1.08 1.08 7 1.08	1.09 1.08 1.08 6	1.09	1.09 5
	l No. Temperature (°F)	3 4 5 5 6 6	3 41 4 41 5 40 6 40	3 4 4 4 4 4 4 4 4 4	3 4 4 5 6 4 4 4 4 7 7	3 72 4 73 5 78 6 82	3 37. 4 33.5 5 30.5
	Date Cell	02/24/83 13	03/03/83 13	03/17/83 13	03/24/83 13	08/09/83	01/10/84 13

Table A9. Continued.

r e t				
Moisture Content (%)	4.4 4.6 6.3	4.4 4.5 3.6 .3	4.4 5.1 1.2	4.7 4.6 9.8 1.3
Resistivity Corrected to 60°F (ohms)	33,500 21,000 41,500	31,000 34,000 15,000 13,100	30,000 31,500 16,000 16,500	19,500 21,000 12,500 11,800
Measured Resistivity (ohms)	54,500 33,480 73,440 - (f)	49,050 55,350 24,840 22,950(f)	42,500 50,500 23,000 23,000	25,000 28,000 16,000 15,000
Correction Factor	1.09 1.08 1.08	1.09 1.08 1.08	1.09 1.08 1.08	1.09 1.08 1.08
Temperature (°F)	36 36 32 30	36 36 34.5	38 38 40 88	43.5 43. 44 44°
Cell No.	13 14 15 16	13 15 16	13 15 16	13 15 16
Date	01/31/84	03/01/84	03/07/84	03/20/84

Table AlO. SR 97 - Field Soil Cell Resistivities

Corrected Resistivity (ohms)	< 100 1860 1280 249	170 1800 1350 250	< 100 1300 700 265	< 100 1250 700 182	660 2600 5200 2610	1 1 1 1
Measured Resistivity (ohms)	108 2592 1744 321	216 2484 1853 321	108 1620 872 321	108 1512 872 214	540 1944 3815 2033	86,400(f) 324,000(f) 1,199,000(f) 535,000(f)
Correction Factor	1.08 1.08 1.09	1.08 1.09 1.07	1.08 1.08 1.09	1.08 1.08 1.09	1.08 1.08 1.09	1.08 1.08 1.09
Temperature (°F)	38 38 38 38 38	40 41 40 40	44 46 45	46 47 47 47	79 82 82 78	30 32 30 29
Cell No.	8 7 0 2	8702	8 7 6 5	8 4 6 5	5 7 8	5 6 7 8
Date	02/23/83	03/04/83	03/18/83	03/24/83	08/ /83	01/11/84

Table AlQ. SR 97 - Field Soil Cell Resistivities (Continued)

Measured Corrected Resistivity Resistivity (ohms)	,646(f) ,000(f) ,000(f) ,000(f)	4,860(f) 432,000(f) 545,000(f) 214,000(f)	626 455 ,700 1870 ,687 3050	680 495 ,996 2800 ,867 4700 ,173 2800	400 315 3800 2900 3500 2730 3500 2610	600 520 3200 2690 5700 4700 3600 2850
Mea Resis (o	2,646(243,000(1,417,000(2,140,000(4 432 545 214	244	K 0 4		
Correction Factor	1.08 1.08 1.09	1.08 1.09 1.07	1.08 1.09 1.07	1.08 1.09 1.07	1.08 1.09 1.07	1.08 1.09 1.09
Temperature (°F)	30 31 30 24	30 33 28 28	35 36.5 33.5	36.5 38.5 36.0	38 38 38 38	43.5 45.5 44.5 42.5
Cell No.	8 7 6 5	8 7 6 5	rvονά	8 7 6 5	8 7 6 5	8702
Date	01/17/84	01/31/84	02/21/84	02/29/84	03/06/84	03/19/84

APPENDIX B LABORATORY TESTING DATA

APPENDIX B

LABORATORY TESTING DATA

Contained in this appendix are the results of the laboratory tests conducted on the asphalt concrete cores, and the base and subgrade materials. The results include soil classification, gradation and estimated "R" value, as well as the resilient modulus data.

Table B1. Asphalt Concrete Resilient Modulus Data at 70°F .

Site	Sample	Side 1 MR (psi)	Side 2 M _R (psi)	Average M _R (psi)
SR 174	A1 A2 A3	922,000 1,166,000 1,096,000	936,000 1,148,000	929,000 1,157,000 1,096,000
			Average	e 1,060,000
SR 97	G1 G2 G3	605,000 434,000	583,000 502,000 485,000	583,000 554,000 460,000
	Н1 Н2 Н3	801,000 489,000 604,000	583,000 453,000 596,000	692,000 471,000 600,000
			Average	e 560,000

Table B2. Results of Subgrade Resilient Modulus Testing for SR 97.

			, .,	
si)	Deviator Stress, $\sigma_{\mathbf{d}}$ (psi)	27	27,566	28,796
ilus, M _R (p		18	20,954	22,997
Resilient Modulus, M _R (psi)		eviator Str	6_	15,690
Re		4	15,803	17,103
3 3 3 4 3	Pressure	(ps1)	2896	ପ ନ ଜ ଦ
1 2 2 2	Molsture Content	(%)	9	
C	Dry Density (pcf)		122.7	120.0
	Material		Subgrade (top)	Subgrade (ditch)

Table B3. Results of Base and Subgrade Resilient Modulus Testing for SR 2, Sunnyslope.

						
) Si	si) i)		24,000	27,556	28,626	19,197
ulus, M _R (F	ess, o _d (ps	18	15,716	17,646	21,865	15,810
Resilient Modulus, M _R (psi)	Deviator Stress, o _d (psi)	6	10,915	14,767	15,690	14,038
Re	Ŏ	4	11,062	13,828	13,828	15,882
200	Pressure	(ps1)	2 E G G	0 W W D	0 W W D	0 W W D
Moi com	Content	(%)	ഹ		7	6.5
\ <u>\</u>	Density	(pcr)	125.1	117.4	119.3	107.3
	Material		Base (bottom)	Base	Base (bottom)	Subgrade (bottom)

Table B4. Results of Base and Subgrade Resilient Modulus Testing for SR 2, MP 159.6.

;i)	i.)		28,796	30,667	23,517	27,291	29,188
us, M _R (ps	s, o _d (psi	18	21,529	23,370	18,074	22,533	24,092
Resilient Modulus, M _R (psi)	Deviator Stress, o _d (psi)	6	16,846	17,498	12,835	17,675	19,438
Res	De	4	15,882	18,713	10,157	18,897	37,058
	Confining	(psi)	2896	୵୷ଡ଼ଡ଼	ପଳଉଦ	ପଳଉଚ	2 8 9 6
	Moisture Content	(%)	C)	5.5	5.5	9	7
	Dry Densitv	(pcf)	125.6	127.3	122.8	124.9	123.5
	Material		Base (6"-9" depth)	Base (3"-9" depth)	Base (2"-5" depth)	Subgrade (top)	Subgrade (bottom)

Table B5. Results of Base and Subgrade Resilient Modulus Testing for SR 174.

	si)	i)	27	27,730	28,796	30,102	22,349	21,890
	lus, M _R (p	ss, o _d (psi)	18	21,997	22,997	24,400	18,069	17,341
	Resilient Modulus, M _R (psi)	Deviator Stress,	6	18,049	19,438	20,322	16,846	15,690
77 . T.	Res	De	4	15,882	18,529	18,621	18,529	18,437
roddids lesting 101 3K 17+	Confining	Pressure	(ps1)	28 9 6	0 6 3 2	0 6 3 7	0 M M D	0 m w o
n no.	MO.i.o.	Content (%)	(%)	5.5	5.5	ഗ	ω	7.5
	>,,	Density (ncf)	(, , ,)	120.6	119.6	118.4	102.5	105.2
	,	Material		Base (2"-4" depth)	Base (5"-8" depth)	Base (5"-9" depth)	Subgrade (12"-18" depth)	Subgrade (18"-24" depth)

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION Materials Laboratory Olympia

SOIL TEST DATA

Job No. HR-605 S.R. No.	97 Section	on	Frost Study
Field Sample No.	15.	16.	
Field Sample No Laboratory No	5-5297	5-5298	
Sample from Station			
Officet			
Depth Textural Classification	Subgrade-Top	Subject Ditel	
Textural Classification	SANDY	SANDY	
	STONE	STONE	
-			
Liquid Limit			
Plasticity Index			
Chading Mayimum Sizo	2"		
Grading - Maximum Size % Passing l½"			
% rassing 12	99		
3/4"	99	400	
3/8"	84	100 85	
#4	60	60	
10	46	47	
40	25	26	
200	9	7	
Service			
pH Factor			
HRB Class. & Group Index	A-1-a(0)	A-1-a(0)	
Proctor (ASTM D698-42T): Opt. Moist. Cont. Max. Density			
Resilient Modulus "M _r "			
Estimated			
Resistance Value "R"	78	75	
Equilibrium Swell			
Pressure (psi)			
Theoretical Total Surfacing and Bituminous Mat,			
Design Traffic Index			
DISTRIBUTION: Materials Files General Files			A. J. PETERS, P.E. Materials Engineer
District Engineer			Date February 9, 1984
Dist. Soils Engr.			Dy Spirit 5
Plan. & Contracts			Dato VE housen 9 1984
Hdq. Loc. Engr.			vale violani j vilot
Bureau Pub. Roads	-		
Soils Lab.			134

H.F. 26.02 (Rev.)

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION Materials Laboratory Olympia

SOIL TEST DATA

o No. <i>HR-605</i> S.R. No eld Sample No.					
oratory No.	/. 5-5292	2. 5-5293	3. 5-5294	4.	4B.
ple from Station M.P.	200	200	200		5-5296
et				200	200
n _.	Base-Bottom	Base Course	Subgrade-Top	Base Course - Bitis	Sabarade B'H'
ıral Cl a ssifica t ion	SILTY	SILTY	STONY	SILTY	GRAVELLY
	SANDY	SANDY	SILTY	SANDY	SILTY
	GRAVEL	GRAVEL	SAND	GRAVEL	SAND
d Limit			ļ		
icity Index	 				
g - Maximum Size	21/2"	21/2"	21/2"	24z"	21/2"
% Pas si ng l ₂ "	79	92	97	84	98
1 "	63	80	94	67	96
3/4"	54	73	91	58	94
3/8"	43	62	85	45	89
#4 10	37	54	79	40	81
40	33 21	48	71	37	7/
200	7	7	49	27	_50
			16	<u>7</u>	19
cor					
ss. & Group Index	A-1-a(0)	A-1-a(0)	A-1-6 (0)	A-1-a (o)	A-1-b(0)
r (ASTM D698-42T): Moist. Cont.					
Density					
ient Modulus "M _r "					
nated					
stance Value "R"	75	74	66	76	66
ibrium Swell					
sure (psi) tical Total Surfacing					
situminous Mat,					
n Traffic Index				1	
JTION:				DETERS D	_
ls Files				PETERS, P.	
t Engineer			Mate	ria Engine	er
Soils Engr.			Rv	A Joshan	
& Contracts			_ دی	1 John Contract	.
oc. Engr.			Date	1 Februar	7 9, 1984
Pub. Roads			-200		1
ab.			135		

-. 26.02 (Rev.)

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION Materials Laboratory Olympia

SOIL TEST DATA

ield Sample No	5.	6.	7.	8.	9.	
aboratory No.	5-5287	5-5288	5-5289	5-5290	5-5291	
ample from Station M.P.	159.6	159.6	159.6	159.6	159.6	
ffset						
epth	6"-9"	3"-9"	2"-5"	Subgrade-Top	Subjecte Bit	
extural Classification	SILTY	SILTY	SILTY	SILTY	SILTY	
	SANDY	SANDY	SANDY	SANDY	SANDY	
	STONE	STONE	STONE	STONE	STONE	
iquid Limit						
lasticity Index						
rading - Maximum Size	21/2"	Z/2"		3"	Z'/2"	
% Passing la" "	96	94		88	94	
ן " "	92	91		80	85	
3/4"	89	89	100	74	82	***************************************
3/8"	67	66	88	60	68	
#4	47	48	56	47	55	
10	28	34	35	35	41	
40	13	16	16	18	23	
200	7	7	8	9	12	
•						
H Factor						
		4 \				
RB Class. & Group Index	A-1-a(0)	A-1-a(0)	A-1-A(0)	A-1-a(0)	A-1-a (0)	
roctor (ASTM D698-42T):						
Opt. Moist. Cont.						
Max. Density						
					}	
Resilient Modulus "M,"					1	
						-
Estimated						
Resistance Value "R"	78	77	80	80	79	
Equilibrium Swell						
Pressure (psi)	İ					
heoretical Total Surfacing						***
and Bituminous Mat,					!	
Design Traffic Index				1		

Resistance value R	/ <i>D</i>		BO	1 80	79	
Equilibrium Swell						
Pressure (psi)					1	İ
Theoretical Total Surfacing						
and Bituminous Mat,		1				
Design Traffic Index		<u> </u>				
DISTRIBUTION:						
Materials Files				A. J. PETERS,	P.E.	
General Files				Materials Engi	ineer	
District Engineer				M/M		
Dist. Soils Engr.			ary 9,19			
Plan. & Contracts						
Hdq. Loc. Engr.		<i>84</i>				
Bureau Pub. Roads						
Soils Lab.			136			
H.F. 26.02 (Rev.)						

DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION Materials Laboratory Olympia

SOIL TEST DATA

Job No. HR-605 S.R. No.	17 4 Secti	on	Fr	ost Stud	<u>'</u> y	
Field Sample No.	10.	11.	12.	/3.	14.	
_aboratory No	5-5299	5-5300	5-5301	5-5302	5-5303	
Sample from Station						
Offset						
Depth	2"-4"	5"-8"	5"-9"	12"-18"	18"-24"	
Textural Classification	SANDY	SILTY	SILTY	STONY	SILTY	
	STONE	SANDY	SANDY	SILTY	SAWDY	
		GRAVEL	GRAVEL	SAND	STONE	
Liquid Limit						
Plasticity Index						
- Index						
Grading - Maximum Size		3"	21/2"	z "	3"	
% Passing li"	100	82	85	95	92	
1"	100	71	74	89	86	
3/4"	100	65	68	85	82	
3/8"	85	53	55	78	72	
#4	57	44	45	70	66	
10	41	37	36	55	48	
40	21	ZI	19	32	36	
200	7	9	9	18	22	
oH Factor						
HRB Class. & Group Index	A-1-a(0)	A-1-a(0)	A-1-a (0)	A-1-b(0)	A-1-b(0)	
Proctor (ASTM D698-42T): Opt. Moist. Cont. Max. Density						
max. Delisity						
Resilient Modulus "M,"						
Estimated		;				
Resistance Value "R"	76	74	72	62	_ 55	
Equilibrium Swell			1			
Pressure (psi)						
Theoretical Total Surfacing						
and Bituminous Mat, Design Traffic Index			İ			
						<u> </u>
DISTRIBUTION:						
Materials Files				. PETERS, P.		
General Files	-		Mate	rials Engine	eer	
District Engineer			_ •			
list. Soils Engr.			Ву _	Martiner.	1-5	
Plan. & Contracts			-	Vi Janher	9 1001	·
Idq. Loc. Engr.			Date	V FLORA	9 31784	
Bureau Pub. Roads		_	_			
Soils Lab.		13	37			

1.F. 26.02 (Rev.)

APPENDIX C BISDEF COMPUTER PROGRAM

APPENDIX C

BISDEF COMPUTER PROGRAM

A program called BISDEF was used to determine a set of modulus values that provide the best fit between a measured deflection basin and a computed deflection basin when given an initial estimate of the modulus values, a range of modulus values, and a set of measured deflections. An overview of this computer program is provided in Figure C1.

Figure C1. Flow Chart for the BISDEF Computer Program.

APPENDIX D RESULTS OBTAINED FROM THE PSAD2A COMPUTER PROGRAM AND PLOTS FOR DETERMINATION OF SPRING ALLOWABLE LOAD

APPENDIX D

RESULTS OBTAINED FROM THE PSAD2A COMPUTER PROGRAM AND PLOTS FOR DETERMINATION OF SPRING ALLOWABLE LOAD

This appendix contains the output of interest obtained from the PSAD2A computer. This includes surface deflection (δ), horizontal strain at the bottom of the apshalt concrete (ϵ_t), vertical strain at the top of the base (ϵ_{vb}), and vertical strain at the top of the subgrade (ϵ_{vs}) under all the loading conditions analyzed.

Also included are the plots of these data. The plots were used for determination of spring allowable load as described in Chapter IV.

Table D1. SR 97, MP 183.48-184.00 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions.

,	_																					
	s A ₃	$(\times 10^{-6})$	-132.0	-96.06	-149.2	-108.5	-67.42	-165.1	-120.6	-75.51	-180.9	-132.4	-85.76	-237.8	-174.7	-114.3	-272.5	-206.9	-133.7	-290.4	-217.8	-142.2
ition	q^3	(× 10 ⁻⁶)	-614.4	-490.0		_	_	_	_	_	_	_	_	_	_	-		-			-	
Spring Condition	+ 3	(× 10 ⁻⁶)	167.8	131.3	·	ψ.	∞	ψ.	Ġ	ςi.	Ġ			φ.	Ġ	<u>~</u>	<u>~</u> :		Ġ	<u>.</u>	٠:	ά
S	4O	$(x^{10}^{-3} in.)$	8.028	6.217	8.872	6.819	4.742	9.625	7.411	5.168	10.36	7.966	5.689	13.00	10.04	7.116	14.52	11.57	8.065	15.29	12.01	8.462
	۶۸ ₃	(× 10 ⁻⁶)	-118.5		-132.6			-145.5			158.4		-	-203.7			-230.5			-243.8		
ition	q _N	(× 10 ⁻⁶)	-738.0		-794.6			-759.6			-746.0			-846.9			-766.1			-706.5		
Summer Condition	υ ω	(× 10 ⁻⁶)	212.1		226.6			206.5			194.9			211.5			171.9			146.4		
	40	(x 10 ⁻³ in.)	7.029		7.750			8.138			8.589			10.62			11.37			11.67		
Load	Raduis (in.)	•		3.62	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Tire	Pressure (psi)		105	80 55	115	75	52	105	21	55	001	65	9	15	80	65	100	100	65	06	75	55
Tire	Load (1bs)		4400	3300 2200	4950	3712	2475	5500	4125	2/50	6050	4538	3025	7920	5940	3960	9240	6930	4620	10000	7500	2000
Tire	Size Modeled		8-22.5		9-22.5			10-77-01			G.77-11		5	12-24.5			14-17.5		ć	10-22.5		

Figure D1. SR 97 - Tire Size 8-22.5.

Figure D2. SR 97 - Tire Size 9-22.5.

Figure D4. SR 97 - Tire Size 11-22.5.

Figure D6. SR 97 - Tire Size 14-17.5.

Figure D7. SR 97 - Tire Size 16-22.5.

Table D2. SR 2, MP 117.38-117.62 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions.

-	-																						
	S.V.	$(\times 10^{-6})$	-116.6	-81.5	-50.2	-135.2	-93.9	-58.2	-155.3	-105.8	ഥ	-175.8	-119.9	-73.9	-252.4	-169.8	-101-1	-302.4	-209.9	-121.4	-329.4	-227.2	-132.2
ition	q _v	(× 10 ₋ e)	-408.8	-315.5	-219.2	-453.7	-338.5	-237.9	-479.0	-358.1	-256.4	-512.1	-381.4	-283.8	-628.1	-473.4	-342.6	-664.8	-553.8	-379.2	-673.5	-537.6	-379.3
Spring Condition	ب د	(× 10 ₋ e)	143.5	110.7	75.7	161.8	118.0	82.1	169.9	124.0	88.3	181.4	131.8	98.6	223.7	164.1	118.0	233.4	195.2	130.0	233.7	183.4	127.8
S		(x 10 ⁻³ in.)	8.122	5.899	3.838	9.265	6.543	4.295	10.25	7.211	4.740	11.37	7.928	5.300	15.63	10.76	6.850	18.11	13.14	7.969	19.42	7:	45
	s^3	$(\times 10^{-6})$	-140.2		**********	-162.1	******		-184.8			-208.5			-292.7			-347.6			-377.8		
tion	q^3	(× 10 ₋ e)	-498.9			-547.0			-568.8			-597.2			-729.7			-752.1			-755.0		
Summer Condition	գ 3	(× 10 ₋ e)	188.5			207.7			215.0			224.6			276.0			280.7			278.1		
Sı	40	$(x 10^{-3} in.)$	9.845			11.18			12.20			13.35			18.03			20.52			21.87		
load	Radius) = -	3.65	3.62	3.57	3.70	3.97	3.78	4.08	4.33	3.99	4.39	4.7]	3.85	4.68	4.86	4.40	5.42	4.70	4.76	5.95	5.64	5.38
Tire	Pressure	(cd)	105	80	55	115	75	55	105	70	55	100	65	65	115	80	65	100	100	92	06	75	52
Tire	Load	(60)	4400	3300	2200	4950	3712	2475	5500	4125	2750	6050	4538	3025	7920	5940	3960	9240	6930	4620	10000	7500	2000
Tire	Size		8-22.5			9-22.5			10-22.5			11-22.5			12-24.5			14-17.5		****	16-22.5		

Figure D8. SR 2, Sunnyslope - Tire Size 8-22.5.

Figure D9. SR 2, Sunnyslope - Tire Size 9-22.5.

Figure D10. SR 2, Sunnyslope - Tire Size 10-22.5.

Figure Dll. SR 2, Sunnyslope - Tire Size 11-22.5.

Figure D12. SR 2, Sunnyslope - Tire Size 12-24.5.

Figure D13. SR 2, Sunnyslope - Tire Size 14-17.5.

Deflection (x 10^{-3} in); Strain (x 10^{-6} in/in)

Table D3. SR 2, MP 159.6-160.0 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions.

Tire	, , , ,	, , , , , , , , , , , , , , , , , , ,	7 (SI	Summer Condition	ition		S	Spring Condition	ition	
Size Modeled	Load (1bs)	Pressure (psi)	Raduis (in.)	ô (x 10 ⁻³ in.)	ε _t (× 10 ⁻⁶)	(9-01 x)	(x 10 ⁻⁶	ه (× 10 ⁻³ in.)	(x 10 ⁻⁶)	(9 <mark>4</mark> v ³	(x 10 ⁻⁵⁶)
8-22.€	4400	105	1 •	17.73	319.2	-1210.	-561.1	19.60	342.1	1416.	568.3
	3300	0 kg	3.62					14.28	246.1	1121.	397.8
9-22.5	4950	115		19.93	348.6	-1313.	-642.5	21.61	375.6	1548.	650.2
	3712	75	•					15.85	268.8	1169.	449.5
	2475	55	•					10.69	195.7	9.698	276.3
110-22.5	5500	105	•	21.60	342.4	-1324.	-703.5	23.49	372.9	1581.	715.2
1	4125	70	•			-		17.33	269.9	1203.	499.0
	2750	55	•			-		11.74	204.4	919.3	309.5
11-22.5	6050	100	•	23.24	340.7	-1344.	-764.6	25.47	375.9	1628.	783.6
·	4538	9	•					18.64	267.7	1232.	540.3
	3025	9	•					13.01	231.3	1017.	351.4
12-24.5	7920	115	•	29.59	392.2	-1545.	-1002.	32.92	444.3	1931.	1048.
dines.	5940	80	•					24.25	328.6	1495.	735.6
	3960	9	•					16.45	255.5	1161.	466.4
14-17.5	9240	100	•	33.06	367.8	-1526.	-1125.	37.01	425.8	-1951.	-1185.
	6930	100	•					28.70	393.3	-1735.	-897.9
	4620	9	•					18.90	269.5	-1124.	-548.5
16-22.5	10000	96	•	34.76	344.9	-1488.	-1181.	38.83	403.0	-1921.	-1241.
	7500	75	•					29.42	335.5	-1605.	8.606-
•	2000	52	•					19.76	249.3	-1217.	-572.8

Figure D15. SR 2, MP 159.6 - Tire Size 8-22.5

Figure D16. SR 2, MP 159.6 - Tire Size 9-22.5.

Figure D17. SR 2, MP 159.6 - Tire Size 10-22.5.

Figure D18. SR 2, MP 159.6 - Tire Size 11-22.5.

Figure D20. SR 2, MP 159.6 - Tire Size 14-17.5.

Figure D21. SR 2, MP 159.6 - Tire Size 16-22.5.

Table D4. SR 172, MP 2.0-1.9 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions.

	e vs	(× 10 ⁻⁶)	-3238.	-2603.	-3509.	-2818.	-2085.	-3776.	-3011.	-2255.	-4005.	-3175.	-2427.	-4810.	-3863.	-2927.	-5216.	-4359.	-3215.	-5357.	-4376.	_3311
Spring Condition	ε _ν b	(x 10 ⁻⁶)	-5763.	-5172.	-5894.	-4965.	-3499.	-5676.	-4744.	-4451.	-5433.	-4497.	-4707.	-5655.	-4789.	-4580.	-5092.	-5315.	-4457.	-4712.	-4419.	-/1035
Spring	φ	(x 10 ⁻³ in.)	65.83	55.17 43.33	70.18	58.13	46.25	74.09	60.91	48.87	77.48	63.35	51.78	90.93	74.72	59.47	97.91	83.20	61.96	101.0	83.63	65 62
u	ς Λ ₃ .	(× 10 ⁻⁶)	-1995.		-2223.			-2375.			-2527.			-3142.			-3369.			-3430.		
Summer Condition	g v	(× 10 ⁻⁶)	-2989.		-3224.			-3024.			-2899.			-3173.			-2770.			-2491.		
Summe	40	$(x 10^{-3} in.)$	39.58		43.64			45.51			47.71			58.28			61.90			63.23		
- - - -	Radius (in.)		3.65	3.62 3.57	3.70	3.97	3.78	4.08	4.33	3.9ა	4.39	4.71	3.85	4.68	4.86	4.40	5.42	4.70	4.76	5.95	5.64	5.38
Tive	Pressure (psi)		105	80 22	115	75	22	105	70	55	100	65	65	115	80	65	100	100	65	06	75	55
Tire	Load (1bs)		4400	3300 2200	4950	3712	2475	2500	4125	2750	6050	4538	3025	7920	5940	3960	9240	6930	4620	10000	7500	5000
Tire	Size Modeled		3-22.5		9-22.5			10-22.5			11-22.5			12-24.5			14-17.5			16-22.5		

Figure D22. SR 172, MP 2 - Tire Size 8-22.5.

Figure D23. SR 172, MP 2 - Tire Size 9-22.5.

Figure D24. SR 172, MP 2 - Tire Size 10-22.5.

Figure D25. SR 172, MP 2 - Tire Size 11-22.5.

Figure D26. SR 172, MP 2 - Tire Size 12-24.5.

Figure D27. SR 172, MP 2 - Tire Size 14-17.5.

Figure D28. SR 172, MP 2 - Tire Size 16-22.5.

Table D5. SR 172, MP 21.4-21.0 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions.

	ς γ		616.0	270.0	1.0/0-	-243.0	-302.9	-276.0	-641.2	-464 3	-306.0	-700.1	-505.4	-340.5	-917.6	-669.1	-442.9	-1039.	-794.8	-514.1	-1099.	$\frac{2}{3}$	-542.4
Condition	q∧ ₃	(× 10 ⁻⁶)	1020	1527	1367	2110	-1650	-1201.	-2216.	-1740.	-1292.	-2320.	-1811.	-1419.	-2812.	-2218.	-1678.	-2972.	-2544.	-1838.	-2996.	-2488.	-1857.
Spring Conc	د د	(× 10 ⁻⁶)	7 718	246.2	171 3	25.1.3	256.6	182.8	356.3	261.5	193.5	364.1	264.1	218.0	437.0	326.9	248.4	434.6	387.8	266.4	420.6	346.7	254.6
	40	(x 10 ⁻³ in.)	24.27	19.05	13.39	26.99	20.93	14.79	29.26	22.71	16.16	31.51	24.36	17.73	39.21	30.54	21.87	43.87	35.07	24.70	45.94	36.33	26.01
	νς γ	(× 10 ⁻⁸)	-518.9	• •		-579.5	•		-628.1	-m- J.		-676.6			-860.7			-954.5			-994.3	******	
 110n	q' N	(× 10 ₋ e)	-1179.))		-1292.			-1289.			-1306.			-1551.			-1502.			-1434.		
Summer Condition	υ •	(× 10 ₋ 6)	269.4			294.5			282.9			277.5			320.6			288.3			216.3		
	° ((× 10 ⁻³ in.)	14.40			15.99		:	17.14			18.31		(52.99		ı	25.16			26.06		
- C	Lodu Radius	(in.)	•	•	•	•	3.97	•	•	•	•	•	•	•	•	•	•	•			•		
, , ,	Pressure	(psi)	105	80	52	115	75	55	105	0 !	55	00.	60	00.	ი ი))	င္ပင္	00.	3 :	65	06	75	22
	Load	(lbs)	4400	3300	2200	4950	3712	24/5	5500	4125	05/2	0020	4538	2020	0767	5940	3960	9240	0830	4620	00001	7500	2000
T:	Size	Modeled Modeled	8-22.5		ć	9-22.5		10-22 E	•			6.77-11.3		12_24 E			7/_17 E	:		Ċ	6.22-01		

Figure D29. SR 172, MP 21.4 - Tire Size 8-22.5.

Figure D30. SR 172, MP 21.4 - Tire Size 9-22.5.

Figure D32. SR 172, MP 21.4 - Tire Size 11-22.5

Figure D34. SR 172, MP 21.4 - Tire Size 14-17.5.

SR 174, MP 2.3-2.0 - Results of the PSAD2A Analysis for Spring and Summer Loading Conditions. Table D6.

Tire	Tire	Tire	Load	าร	Summer Condition	tion		S	Spring Condition	ition	
Size Modeled	Load (1bs)	Pressure (psi)	Raduis (in.)	Ø	e t	qλ Λp	s, v	Ю	٦ د د	qv ³	E V.S
				(x 10 ⁻³ in.)	(× 10 ₋ e)	(× 10 ⁻⁶)	(× 10 ₋ e)	$(x 10^{-3} in.)$	(× 10 ⁻⁶)	(× 10-6)	(× 10 ⁻⁶)
8-22.5	4400	105		13.58	243.0	-988.5	-362.4	18.50	227.8	-1279.	-314.9
	3300	80	-					14.66	177.9	-1059.	-222.1
	2200	22						10.41	124.6	-709.9	-134.5
9-22.5	4950	115	3.70	15.09	265.2	-1077.	-409.5	20.52	251.3	-1399.	-361.8
	3712	75						16.09	185.1	-1114.	-251.8
	2475	52						11.44	133.0	-8555.8	-153.8
10-22.5	5500	105		16.30	260.3	-1089.	-449.0	22.28	256.3	-1462.	-401.0
	4125	70						17.47	190.3	-1175.	-279.4
	2750	55						12.45	140.9	-906-1	-171.1
11-22.5	6050	100		17.55	259.7	-11111.	-489.5	24.09	263.8	-1563.	-441.2
	4538	65			المتحصور			18.83	193.5	-1224.	-308.2
	3025	65						13.56	157.7	-984.3	-195.7
12-24.5	_	115		21.92	297.0	-1278.	-634.4	30.11	316.4	82	-595.7
		80						23.47	238.3	-1472.	420.0
-	3960	65						16.71	180.5	-1140.	-263.9
14-17.5		100		24.30	277.1	-1262.	-712.7	33.86	316.9	-1922.	-683.8
· -	_	100						26.88	280.9	-1657.	-508.5
	4620	69			,,,,,			18.96	194.9	-1250.	-310.5
16-22.5	_	06	•	25.61	260.6	-1240.	-753.3	35.82	310.4	-1959.	-726.1
i i		75	•		-			28.20	255.5	-1643.	-528.2
	2000	55	•					20.04	188.0	-1272.	-328.9

Figure D36. SR 174 - Tire Size 8-22.5.

Figure D37. SR 174 - Tire Size 9-22.5.

Figure D40. SR 174 - Tire Size 12-24.5.

Figure D41. SR 174 - Tire Size 14-17.5.

SR 172, MP 21.4-21.0 - Results of the PSAD2A Analysis for a Constant Tire Pressure of 95 psi, Spring and Summer Loading Conditions. Table D7.

Tire Tire Tire Tire Size Load Pressure (psi) (ps	Load Radius (in.) 3.84 3.33 2.72	(x 10 ⁻³ in.)	4 3				Spring Condition	ומויום	
odeled (lbs) (psi) -22.5 4400 95 3300 95 2200 95 -22.5 4950 95 0-22.5 5500 95 1-22.5 6050 95 1-22.5 6050 95 2750 95 1-22.5 6050 95 4533 95 2-24.5 7920 95 3925 95 4536 95 4538 95 4538 95 4538 95 4538 95 4538 95 6940 95	3.84 3.33 2.72	(x 10 ⁻³ in.)	_	٩ ۸	S۸ ₃	40	μ	gv ³	ε ν 3
-22.5 4400 3300 -22.5 4950 3712 2475 5500 1-22.5 5500 4125 2750 1-22.5 6050 4533 3025 2-24.5 7920 5940 3960 4-17.5 9240			$(\times 10^{-6})$	(× 10 ⁻⁶)	(× 10 ₋ e)	(x 10 ⁻³ in.)	(× 10 ⁻⁶)	(x 10 ₋ e)	$(\times 10^{-6})$
3300 -22.5 4950 3712 2475 0-22.5 5500 1-22.5 6050 4533 3025 2-24.5 7920 5940 3960 4-17.5 9240			252.6	-1129.	-514.4	24.10		-1890.	
-22.5 4950 3712 3712 2475 0-22.5 5500 1-22.5 6050 4533 3025 2-24.5 7920 3960 4-17.5 9240	•					19.23	263.3	-1592.	-383.6
3712 2475 -22.5 5500 4125 2750 2750 4533 3025 -24.5 7920 5940 3960 -17.5 9240	•	15.56	258.0	-1177.	-568.6	26.71		-2048.	572.
24.5 5900 -22.5 5500 -22.5 6050 4533 3025 -24.5 7920 5940 3960 -17.5 9240	•					21.19		-1724.	
-22.5 5500 -22.5 4125 -22.5 6050 4533 3025 -24.5 7920 5940 -17.5 9240	•					15.26		-1333.	
4125 2750 2750 4533 3025 -24.5 7920 5940 3960	•	16.90	262.8	-1222.	-622.3	29.14		-2180.	•
-22.5 6050 4533 3025 -24.5 7920 5940 3960	•					23.12			-477.2
-22.5 6050 4533 3025 -24.5 7920 5940 3960 -17.5 9240	•					16.66			-319.7
4533 3025 -24.5 7920 5940 3960 -17.5 9240	•	18.20	267.2	-1272.	-674.0	31.40			-696.5
3025 -24.5 7920 5940 3960 -17.5 9240					in the state of th	25.00			-524.2
-24.5 7920 5940 3960 -17.5 9240	•					17.92			-352.0
5940 3960 -17.5 9240	•	22.22	273.6	-1388.	-837.4	38.44			8.068-
3960 -17.5 9240	•					30.80			-684.9
-17.5 9240	•					22.21			-455.1
	•	24.72	273.1	-1442.	-939.9	43.18			-1037.
	•					34.76			-791.8
	•				A	25.32		-1965.	
	•	26.16	272.2	-1468.	-998.7	45.92		-3018.	-1110.
	•					36.94	•	-2595.	_
	•					26.92		-2049.	-580.2

Figure D43. SR 172, MP 21.4 - Tire Size 8-22.5, Tire Pressure 95 psi.

Figure D44. SR 172, MP 21.4 - Tire Size 9-22.5, Tire Pressure 95 psi.

Figure D45. SR 172, MP 21.4 - Tire Size 10-22.5, Tire Pressure 95 psi.

Figure D46. SR 172, MP 21.4 - Tire Size 11-22.5, Tire Pressure 95 psi.

Figure D47. SR 172, MP 21.4 - Tire Size 14-17.5, Tire Pressure 95 psi.

Figure D48. SR 172, MP 21.4 - Tire Size 12-24.5, Tire Pressure 95 psi.

Figure D49. SR 172, MP 21.4 - Tire Size 16-22.5, Tire Pressure 95 psi.

SR 174, MP 2.3-2.0 - Results of the PSAD2A Analysis for a Constant Tire Pressure of 95 psi, Spring and Summer Loading Conditions. Table D8.

	ενs	(9_0	13.1	27.6	-353.8	58.8	63.5	96.1	90.2	85.7	38.6	21.3	6.90	79.7	ري ي ي ي	76.9	0.0	ි. ව	27.3	33.8	,4 ं. 7	ا. 73	1
	ω	(x 10	۳ د																				
ondition	evb	(x 10 ₋ e)	-1267.	-1084.	- 040.4	-1159.	-917.0	-1452.	-1233.	-974.5	-1524.	-1300.	-1033.	-1766.	-1517.	-1208.	-1910.	-1639.	-1312.	-1986.	-1708.	-1372.	
Spring Condition	ω	(× 10 ⁻⁶)	220.0	88.6	234.2	201.3	160.7	247.2	213.2	170.5	258.3	224.0	180.1	291.5	256.4	208.7	310.3	274.6	226.0	319.8	284.3	235.3	
		(x 10 ⁻³ in.)	24.62	14.72	10.48	16.17	11.66	22.31	17.62	12.70	24.04	19.01	13.75	29.93	23.71	17.07	33.90	26.80	19.26	36.13	28.58	20.56	
	evs.	(x 10 ₋ e)	-358.4		-404.0			-443.9			-485.5			-619.1			-708.4			-758.3			
ondition	ε, vb	(× 10 ⁻⁶)	-959.8		-1008.			-1051.			-1089.			-1189.			-1242.			-1268.			
Summer Condition	ω ₊	(× 10 ⁻⁶)	230.7		239.5			246.1			251.7			263.7			268.4			270.1		الله ويسون	
	40	$(x 10^{-3} in.)$	13.44		14.88))		16.14			17.42			21.47			24.19		-	25.71			
	Load Radius	(in.)	3.84	3.33	2.72	3.53	2.88	4.29	3.72	3.04	4.50	3.90	3.18	5.15	4.46	3.64	5.56	4 82	3.6	7.79	ייס ר	4.09	
	Tire Pressure	(psi)	95	95	9 9 5	95	95	95	95	95	95	95	9.5	95	95	95	95	80.0	9,0	9,5	90	95	
	Tire Load	(1bs)	4400	3300	2200	3712	2475	5500	4125	2750	6050	4538	3025	7920	5940	3960	9240	6030	4620	1000	7500	5000	
	Tire	Modeled	8-22.5		9-22 5	1 1		10-22.5	l I		11-22.5	i I		12-24.5			14-17 5	:		16_22 E	7		

Figure D 50. SR 174 - Tire Size 8-22.5, Tire Pressure 95 psi.

Figure D 51. SR 174 - Tire Size 9-22.5, Tire Pressure 95 psi.

Figure D52. SR 174 - Tire Size 10-22.5, Tire Pressure 95 psi.

Figure D53. SR 174 - Tire Size 11-22.5, Tire Pressure 95 psi.

Figure D54. SR 174 - Tire Size 12-24.5, Tire Pressure 95 psi.

Figure D55. SR 174 - Tire Size 14-17.5, Tire Pressure 95 psi.

APPENDIX E DEFLECTION DATA

Table El. Benkelman Beam Deflections

		Benkelman Deflect	
Site Location	Date	Avg. x10 ⁻³ in	St. Dev. x10 ⁻³ in
SR 97	02/23/83	15.58	2.54
	03/04/83	14.32	3.20
	03/18/83	16.0	2.82
	03/24/83	18.64	2.29
SR 2	02/23/83	19.6	7.60
MP 117.38	03/04/83	18.55	6.61
to MP 117.62	03/18/83	19.59	5.95
NF 117.02	03/24/83	21.85	8.63
SR 2	02/24/83	26.59	9.87
MP 159.6	03/17/83	28.68	8.82
	03/24/83	27.23	7.65
SR 174	02/24/83	28.75	8.46
MP 2.21	03/03/83	23.13	5.72
	03/17/83	25.32	5.61
	03/24/83	26.15	6.56

Table E2. SR 97 - FWD Data, 08/16/83, Surface Temperature = 99°F.

Station (Load (psi)	$(x 10^{-3} in)$	6_2 (x 10^{-3} in)	δ ₃ (× 10 ⁻³ in)	δ ₄ (x 10 ⁻³ in)	6 ₅ (x 10 ⁻³ in)	δ_6 (x 10^{-3} in)	6_7 (x 10^{-3} in)
1	110.6	13.4	7.3	4.5	2.6	1.7	1.4	1.1
	108.2	13.7	8.5	4.8	3.0	2.0	1.4	0.9
	107.3	13.9	8.0	5.1	3.3	2.4	1.9	1.3
	107.3	13.1	7.8	5.0	3.5	2.5	1.7	.13
<u> </u>	116.1	13.7	7.3	4.6	3.1	2.3	1.7	1.3
	103.0	12.3	7.3	4.6	2.8	2.0	1.4	1.1
	97.6	12.7	8.1	5.2	3.1	2.4	1.6	1.2
	97.5	13.8	8.7	5.6	3.4	2.3	1.7	1.3
	9.66	15.9	9.5	0.9	3.6	2.4	1.7	1.2
	103.2	11.6	7.3	4.9	3.0	1.9	1.3	1.0
	94.1	12.8	7.8	5.2	3.1	2.0	1.4	1.0
<u>—</u>	104.0	13.4	8.0	5.0	3.1	2.2	1.6	1.2
	9.9	1.1	0.7	0.4	0.3	0.2	0.1	

Table E2. Continued.

Station	Load (psi)	δ_1 (x 10 ⁻³ in)	6_2 (x 10^{-3} in)	δ ₃ (× 10 ⁻³ in)	δ ₄ (× 10 ⁻³ in)	6_5 (x 10^{-3} in)	δ ₆ (x 10 ⁻³ in)	67 (x 10 ⁻³ in)
_	144.2	16.8	9.5	6.3	3.5	2.4	1.9	1.5
20	141.0	17.1	10.1	0.9	3.7	2.5	1.8	1.3
100	142.8	17.9	10.4	6.7	4.3	3.2	2.4	1.8
150	141.0	16.8	10.1	6.9	4.5	3.2	2.3	1.7
200	143.8	16.7	9.1	5.9	4.0	2.8	21.	1.7
250	141.9	15.6	9.1	5.9	3.7	2.6	1.9	1.4
300	138.3	16.8	10.9	7.1	4.4	3.5	2.2	1.7
350	139.7	18.9	12.1	8.2	5.2	3.5	2.6	1.9
400	142.8	21.5	13.0	8.4	5.2	3.4	2.6	1.9
450	146.4	15.2	9.7	6.8	4.4	2.9	2.0	1.5
200	133.1	17.5	10.7	7.4	4.7	3.0	2.1	1.6
ı×	141.4	17.3	10.4	8.9	4.3	3.0	2.2	1.6
S	3.5	1.7	1.2	0.9	0.6	0.4	0.3	0.2

in) 0.05 10-3 0.5 0.5 0.5 9.0 9.0 × in) . 10-3 9.0 0.5 0.5 9.0 0.5 9.0 9.0 9.0 0.8 9.0 0.1 × in) - FWD Data, 01/11/84, Surface Temperature = 34°F. $(x 10^{-3})$ 0.8 0.8 9.0 0.9 0.9 0.9 0.8 0.7 0.7 in) (× 10⁻³ 0.2 1.4 1.4 1.4 (× 10⁻³ 1.8 1.8 2.2 1.8 1.6 2.2 2.0 1.8 1.9 0.2 in) $\begin{array}{c} \delta_2 \\ \text{i } (x \ 10^{-3}) \end{array}$ 2.4 2.3 2.5 3.0 3.0 2.3 2.6 2.5 0.3 6 in) SR $(x 10^{-3})$ 4.4 3.9 3.4 4.0 3.4 3.8 4.0 0.4 E3. Table Load (psi) 9.9/ 79.8 7.97 78.3 76.2 75.0 73.2 74.0 71.8 75.3 2.4 74.1 72.7 Station 100 150 50 200 250 300 350 400 450 500 ı× S

187

Table E3. Continued.

6 ₇ (x 10 ⁻³ in)	8.0	9.0	0.8	0.7	0.7	0.7	0.7	0.8	0.9	0.8	6.0	0.8	0.1
86 (x 10 ⁻³ in)	8.0	0.8	6.0	0.9	1.0	6.0	6.0	1.0	1.1	1.0	1.2	1.0	0.1
6_5 (x 10^{-3} in)	1.0	1.0	1.1	1.2	1.1	1.1	1.1	1.3	1.4	1.3	1.6	1.2	0.2
δ _μ (x 10 ⁻³ in)	1.5	1.6	1.6	1.7	1.6	1.6	1.5	2.0	2.1	1.8	2.2	1.7	0.2
6_3 (x 10 ⁻³ in)	2.3	2.5	2.2	2.5	2.3	2.3	2.4	3.0	3.1	2.5	2.9	2.5	0.3
6_2 (x 10 ⁻³ in)	3.2	3.7	3.2	3.4	3.7	3.3	3.3	4.0	4.2	3.2	3.7	3.6	0.4
6 ₁ (x 10 ⁻³ in)	5.1	0.9	5.4	5.3	5.6	0.1	5.6	6.5	8.9	5.0	5.4	5.7	9.0
Load (psi)	114.2	109.9	112.6	110.4	108.0	106.2	106.3	104.2	104.4	103.7	102.8	107.5	3.8
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E3. Continued.

<u></u>	т												
δ ₇ (x 10 ⁻³ in)	1.1	1.0	1.2	1.2	1.1	1.1	1.1	1.2	1.3	1.2	1.3	1.2	0.2
δ ₆ (x 10 ⁻³ in)	1.3	1.2	1.4	1.4	1.3	1.3	1.3	1.5	1.6	1.4	1.8	1.4	0.2
δ_5 (x 10^{-3} in)	1.5	1.6	1.8	1.8	1.6	1.6	1.6	2.0	2.1	1.9	2.4	1.8	0.3
δ_{4} (x 10^{-3} in)	2.2	2.4	2.4	2.5	2.4	2.2	2.3	2.8	3.0	2.6	3.2	2.6	0.3
6_3 (x 10 ⁻³ in)	3.2	3.7	3.4	3.6	3.6	3.3	3.4	4.2	4.4	3.6	4.2	3.7	0.4
6_2 (x 10 ⁻³ in)	4.5	5.2	4.6	4.8	4.8	4.7	4.8	5.6	0.9	4.7	5.3	5.0	0.5
δ ₁ (x 10 ⁻³ in)	7.2	8.7	7.9	7.4	7.9	9.8	8.3	0.6	9.7	7.4	7.9	8.2	0.8
Load (psi)	158.1	152.5	154.5	151.8	149.4	147.7	147.9	144.8	138.0	139.1	142.4	147.8	6.4
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E3. Continued.

(x 0 1n) (x 0 1n) (x 0 1n) (x 0 2n) (x 0 2n) <td< th=""><th>Station</th><th>Load (psi)</th><th>δ₁</th><th>δ₂</th><th>δ₃</th><th>64 13</th><th>6 5 1</th><th>δ₆</th><th>6, -3</th></td<>	Station	Load (psi)	δ ₁	δ ₂	δ ₃	64 13	6 5 1	δ ₆	6, -3
195.3 9.1 5.6 4.1 2.8 2.0 187.6 10.9 6.6 4.7 3.1 2.1 191.3 9.9 5.7 4.2 3.0 2.3 191.5 9.5 6.0 4.4 3.2 2.4 184.3 9.7 5.8 2.0 182.8 10.6 5.7 4.1 2.8 2.0 186.4 10.4 6.0 4.2 2.8 2.0 162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 181.0 6.7 5.3 4.2 3.3 2.5 160.7 9.9 6.7 5.3 4.2 3.3 181.0 0.9 6.7 5.3 4.2 3.3 181.0 0.9 6.7 5.3 4.2 3.3 181.0 0.9 6.7 5.3 4.5 3.1 181.0 0.9 6.7 5.3 4.2 3.1 11.6 0.9 0.6 0.5 0.4 0.4		(L C A)	(x 10 ~ in) x 10 ~ in)	(x 10 ~ in)	(x 10 ~ in)				
187.6 10.9 6.6 4.7 3.1 2.1 191.3 9.9 5.7 4.2 3.0 2.3 191.5 9.5 6.0 4.4 3.2 2.4 184.3 9.7 5.8 3.0 2.0 182.8 10.6 5.7 4.1 2.8 2.1 186.4 10.4 6.0 4.2 2.8 2.0 174.4 11.6 6.9 5.2 3.7 2.6 160.7 9.1 5.9 4.5 3.8 2.8 181.0 10.2 6.7 5.3 4.5 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4		195.3	9.1		4.1	2.8	2.0	1.6	1.4
191.3 9.9 5.7 4.2 3.0 2.3 191.5 9.5 6.0 4.4 3.2 2.4 184.3 9.7 5.8 3.0 2.0 182.8 10.6 5.7 4.1 2.8 2.1 186.4 10.4 6.0 4.2 2.8 2.1 174.4 11.6 6.9 5.2 3.7 2.6 160.7 9.1 5.9 4.5 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 181.0 10.2 6.7 5.3 4.2 3.1 11.6 0.9 6.7 5.3 4.2 3.1 11.6 0.9 6.7 5.3 4.2 3.1 11.6 0.9 6.7 5.3 4.2 3.1 11.6 0.9 6.7 5.3 4.2 3.1 11.6 0.9 6.7 5.3 4.2 0.4	20	187.6	10.9	9.9	4.7	3.1	2.1	1.6	1.2
191.5 9.5 6.0 4.4 3.2 2.4 184.3 9.7 5.8 3.0 2.0 182.8 10.6 5.7 4.1 2.8 2.1 186.4 10.4 6.0 4.2 2.8 2.1 174.4 11.6 6.9 5.2 3.7 2.6 160.7 9.1 5.9 4.5 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	100	191.3	6.6	5.7	4.2	3.0	2.3	1.9	1.6
184.3 9.7 5.8 3.0 2.0 182.8 10.6 5.7 4.1 2.8 2.1 186.4 10.4 6.0 4.2 2.8 2.0 174.4 11.6 6.9 5.2 3.7 2.6 162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	150	191.5	9.5	0.9	4.4	3.2	2.4	1.8	1.5
182.8 10.6 5.7 4.1 2.8 2.1 186.4 10.4 6.0 4.2 2.8 2.0 174.4 11.6 6.9 5.2 3.7 2.6 162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	200	184.3	9.7	5.8		3.0	2.0	1.6	1.4
186.4 10.4 6.0 4.2 2.8 2.0 174.4 11.6 6.9 5.2 3.7 2.6 162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	250	182.8	10.6	5.7	4.1	2.8	2.1	1.7	1.4
174.4 11.6 6.9 5.2 3.7 2.6 162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	300	186.4	10.4	6.0	4.2	2.8	2.0	1.6	1.4
162.6 12.0 7.4 5.4 3.8 2.8 160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	350	174.4	11.6	6.9	5.2	3.7	2.6	2.0	1.6
160.7 9.1 5.9 4.5 3.3 2.5 174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	400	162.6	12.0	7.4		3.8	2.8	2.1	1.7
174.6 9.9 6.7 5.3 4.2 3.1 181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	450	160.7	9.1	5.9		3.3		1.9	1.5
181.0 10.2 6.2 4.6 3.2 2.4 11.6 0.9 0.6 0.5 0.4 0.4	200	174.6	6.6	6.7	5.3	4.2	3.1	2.4	1.8
11.6 0.9 0.6 0.5 0.4 0.4	ı×	181.0	10.2				2.4	1.8	1.5
	S	11.6	0.9	9.0	0.5	0.4	0.4	0.3	0.2

in) 9.0 9.0 9.0 0.2 $(\times 10^{-3})$ 0.8 9.0 0.8 6.0 6.0 0.9 0.8 in) - FWD Data, 01/31/84, Surface Temperature = 34°F. 10-3 0.9 1.0 0.8 0.9 0.9 0.8 1.0 0.2 × in) 6^{4} (x 10^{-3} 1.5 1.5 1.8 1.9 2.4 1.8 0.4 $(\times 10^{-3})$ 2.6 3.8 2.9 3.5 2.9 3.3 4.3 3.2 2.8 3.3 9.0 in) 6_2 (× 10^{-3} 4.4 4.5 4.6 6.5 4.3 4.3 5.0 3.9 4.6 9.0 97 in) SR $(\times 10^{-3})$ 8.0 Table E4. 5.8 7.3 7.2 7.6 8.0 10.9 5.9 1.5 2 5. Load (psi) 69.4 67.8 71.4 68.8 72.5 68.4 6.69 8.69 68.8 69.4 68.8 69.5 1.4 Station 50 100 150 200 250 300 350 400 450 500 $i \times o$

191

Table E4. Continued.

Station	Load	δ1		Ĝ3	δ.	δ.5	& 9	6,
	(psi)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	3 in)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
_	101.4	7.7	5.0	3.5	2.2	1.4	1.0	6.0
20	100.2	11.3	7.1	4.8	2.8	1.5	1.0	0.8
100	102.8	10.0	6.1	4.3	2.6	1.6	1.2	1.0
150	97.6	8.8	5.2	3.6	2.1	1.3	1.0	6.0
200	104.6	9.1	5.4	3.6	1.9	1.1	6.0	0.8
250	98.0	6.6	5.9	3.8	2.2	1.3		6.0
300	100.5	10.8	6.7	3.3	2.6	1.6	1.0	
350	99.3	10.9	6.7	4.6	2.8	1.8	1.4	1.1
400	99.5	15.1	8.9	6.2	3.5	2.0	1.4	1.2
450	2.96	8.9	5.9	4.4	3.0	1.8	1.1	0.9
200	96.3	8.0	5.4	4.0	2.6	1.7	1.3	1.0
ı×	99.7	10.0	6.2	4.2	2.6	1.6	1.1	1.0
S	2.6	2.0	1.1	0.8	0.4	0.3	0.2	0.1

Table E4. Continued.

δ ₇ (x 10 ⁻³ in)	1.3	1.1	1.5	1.3	1.1	1.4	1.5	1.7	1.8	1.3	1.5	1.4	0.2
δ ₆ (x 10 ⁻³ in)	1.5	1.5	1.9	1.5	1.3	1.7	1.5	2.1	2.1	1.7	1.9	1.7	0.3
δ ₅ (x 10 ⁻³ in)	2.0	2.1	2.3	2.0	1.6	2.0	2.1	2.6	2.9	2.5	2.6	2.2	0.4
$\delta_{t_{\downarrow}}$ (x 10^{-3} in)	3.1	3.9	3.6	3.0	2.6	3.0	3.5	3.9	4.9	4.1	3.8	3.6	9.0
6_3 (x 10 ⁻³ in)	4.9	6.5	5.9	4.9	4.6	5.1	5.7	6.3	8.2	6.1	5.6	5.8	1.0
6 ₂ (x 10 ⁻³ in)	6.7	9.6	8.4	7.0	7.0	7.7	8.5	8.9	12.0	8.1	7.5	8.3	1.5
δ_1 (x 10^{-3} in)	10.4	14.7	13.7	11.6	11.7	13.1	14.6	14.4	20.2	12.1	11.2	13.4	2.7
Load (psi)	139.4	141.9	140.6	137.4	145.0	138.0	141.9	140.0	140.5	133.6	134.7	139.4	3.3
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E4. Continued.

1 172.9 13.1 8.4 6.0 3.9 2.6 0 176.4 18.3 11.9 8.2 4.9 2.9 0 173.9 16.1 10.0 7.0 4.6 3.0 0 173.9 13.9 8.3 5.9 3.7 2.5 0 173.3 15.6 9.1 6.1 3.7 2.6 0 173.4 17.6 10.0 6.9 4.2 2.6 0 173.5 17.6 10.0 6.9 4.2 2.6 0 173.9 24.7 14.6 10.7 6.1 3.8 0 168.1 13.9 9.6 7.4 5.0 3.2 0 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 0.5 0.5	Station	Load (psi)	6_1 (x 10 ⁻³ in)	62 (x 10^{-3} in)	6 ₃ (x 10 ⁻³ in)	δ ₄ (x 10 ⁻³ in)	6_5 (x 10 ⁻³ in)	δ_6 (x 10 ⁻³ in)	6 ₇ (x 10 ⁻³ in)
176.4 18.3 11.9 8.2 4.9 2.9 173.9 16.1 10.0 7.0 4.6 3.0 170.0 13.8 8.3 5.9 3.7 2.5 182.3 13.9 8.3 5.5 3.3 2.1 173.3 15.6 9.1 6.1 3.7 2.6 176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	_	172.9	13.1	8.4	0.9	3.9	2.6	1.9	1.6
173.9 16.1 10.0 7.0 4.6 3.0 170.0 13.8 8.3 5.9 3.7 2.5 182.3 13.9 8.3 5.5 3.3 2.1 173.3 15.6 9.1 6.1 3.7 2.6 176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 7.4 6.0 3.2 4.6 3.3 1.9 7.1 4.5 2.9 4.6 3.3 1.9 0.5 0.5	20	176.4	18.3	11.9	8.2	4.9	2.9	2.0	1.5
170.0 13.8 8.3 5.9 3.7 2.5 182.3 13.9 8.3 5.5 3.3 2.1 173.3 15.6 9.1 6.1 3.7 2.6 176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 0.5 0.5	100	173.9	16.1	10.0	7.0	4.6	3.0	2.4	2.0
182.3 13.9 8.3 5.5 3.3 2.1 173.3 15.6 9.1 6.1 3.7 2.6 176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	150	170.0	13.8	8.3	5.9	3.7	2.5	2.0	1.7
173.3 15.6 9.1 6.1 3.7 2.6 176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	200	182.3	13.9	8.3	5.5	3.3	2.1	1.8	1.5
176.4 17.6 10.0 6.9 4.2 2.6 173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	250	173.3	15.6	9.1	6.1	3.7	2.6	2.1	1.8
173.5 17.6 10.8 7.6 5.0 3.4 173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	300	176.4	17.6	10.0	6.9	4.2	5.6	2.0	1.9
173.9 24.7 14.6 10.7 6.1 3.8 164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	350	173.5	17.6	10.8	7.6	5.0	3.4	2.7	2.2
164.6 14.5 9.6 7.4 5.0 3.2 168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	400	173.9	24.7	14.6	10.7	6.1	3.8	2.8	2.3
168.1 13.9 9.3 7.0 4.8 3.3 173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	450	164.6	14.5	9.6	7.4	5.0	3.2	2.2	1.7
173.2 16.3 10.0 7.1 4.5 2.9 4.6 3.3 1.9 1.4 0.8 0.5	200	168.1	13.9	9.3	7.0	4.8	3.3	2.5	1.9
4.6 3.3 1.9 1.4 0.8 0.5	ı×	173.2	16.3	10.0	7.1	4.5	2.9	2.2	1.8
	S	4.6	3.3	1.9	1.4	0.8	0.5	0.3	0.3

in) 10-3 0.9 0.2 0.8 0.9 0.7 in) $\frac{\delta_6}{(\times 10^{-3})}$ 1.0 1.5 1.5 1.5 .5 1.3 1.3 1.4 1.3 1.2 0.2 1.3 - FWD Data, 02/21/84, Surface Temperature = 50° F. in) (× 10⁻³ 1.6 2.2 2.5 2.3 1.8 1.8 2.2 2.3 2.0 in) 10-3 3.0 3.5 3.0 3.7 3.2 4.4 ა დ 3.4 3.5 0.4 × $(\times 10^{-3})$ 4.8 5.1 5.3 5.6 5.3 4.9 5.7 5.9 6.9 5.4 5.1 5.4 9.0 in) $6_2 \times 10^{-3}$ 6.4 6.8 6.9 7.6 6.5 6.4 7.4 8.0 9.4 6.9 7.2 0.9 97 in) SR $(\times 10^{-3})$ 8.9 10.0 11.0 10.4 10.3 10.4 10.5 11.3 12.0 8.9 8.7 10.3 Table E5. Load (psi) 79.2 72.5 74.9 75.0 74.2 71.7 73.1 71.8 72.3 76.3 72.7 76.3 2.4 Station 50 100 150 200 250 300 350 400 450 500 ı×

195

Table E5. Continued.

	Load δ_1	62	δ ₃	\$ t	65 13	ه ا ه	67
	(x 10 ~ in)	(x 10 ~ in)	(x 10 ~ in)	(x 10 ~ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ~ in)
1 94.7	7 11.1	7.9	0.9	4.1	5.6	1.5	1.1
50 95.3	.3 12.2	8.1	0.9	3.9	2.2	1.4	1.0
100 98.0	.0 13.9	9.2	6.9	4.5	2.8	1.9	1.4
150 98.0	.0 13.5	9.5	7.2	4.8	3.0	1.9	1.3
200 97.3	.3 12.9	8.9	6.5	4.3	2.6	1.7	1.3
250 95.3	.3 12.6	8.3	5.9	3.7	2.3	1.6	1.2
300 95.4	.4 13.5	0.6	7.6	5.0	4.6	3.0	1.6
350 93.1	.1 15.0	10.2	7.7	5.2	3.1	2.0	1.4
400 98.8	.8 16.4	11.6	8.7	5.7	3.4	2.0	1.4
450 93.2	.2 11.7	8.6	6.9	4.9	3.0	1.7	1.1
500 97.3	.3 12.0	8.3	6.9	4.6	2.9	1.7	1.1
96 	96.0 13.2	0.6	6.9	4.6	3.0	1.8	1.3
s 2	2.0 1.5	1.1	0.8	9.0	9.0	0.4	0.2

Table E5. Continued.

	T												
δ ₇ (x 10 ⁻³ in)	1.7	1.3	2.0	2.0	1.8	1.6	2.0	2.1	2.1	1.6	1.6	1.8	0.3
δ_6 (x 10 ⁻³ in)	2.3	1.9	2.8	2.7	2.4	21.	2.8	3.0	3.0	2.5	2.5	2.5	0.4
δ_s (x 10^{-3} in)	3.6	3.0	4.1	4.3	3.6	3.1	4.3	4.5	4.8	4.2	4.0	4.0	9.0
6^4 (x 10^{-3} in)	5.6	5.2	6.3	9.9	5.9	5.1	8.9	7.1	7.7	9.9	6.1	6.3	0.8
6_3 (x 10 ⁻³ in)	8.0	8.0	9.3	9.6	8.7	7.8	6.6	10.3	11.4	10.0	8.7	9.2	1.1
6_2 (x 10 ⁻³ in)	10.4	10.9	12.3	12.4	11.7	10.8	12.4	13.4	14.8	11.5	11.1	12.0	1.3
$(x 10^{-3} in)$	14.7	16.8	18.6	17.8	17.1	16.5	18.0	10.5	21.2	15.6	15.9	17.4	1.9
Load (psi)	127.7	129.2	129.5	127.9	129.3	127.9	127.4	126.0	129.5	125.5	124.4	127.7	1.7
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E5. Continued.

Station	Load	δ1	δ ₂	δ3	\$	\$ \$	30	6,
	(psi)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	(x 10 ⁻³ in)
_	158.1	18.0	12.7	6.7	6.9	4.6	3.0	2.2
20	156.0	20.4	13.2	8.6	6.4	3.8	2.4	1.7
100	157.0	22.5	15.0	11.4	7.8	5.2	3.6	2.6
150	156.7	-21.4	14.9	11.5	8.0	5.3	3.4	2.4
200	156.5	20.6	14.1	10.6	7.3	4.6	3.0	2.2
250	155.7	20.0	13.0	9.4	6.2	4.0	2.8	2.0
300	154.4	21.9	15.0	12.0	8.3	5.4	3.6	2.6
350	156.4	23.1	16.0	12.4	8.7	5.7	3.9	2.7
400	157.1	25.6	18.0	13.8	9.6	6.1	3.9	2.8
450	152.9	19.3	14.0	11.3	8.1	5.3	3.2	2.2
200	157.1	18.8	13.0	10.4	7.4	4.9	3.1	2.2
ı×	156.2	21.0	14.4	11.1	7.7	5.0	3.3	2.3
S	1.4	2.2	1.6	1.3	1.0	0.7	0.5	0.3
			A					

Table E6. SR 97 - FWD Data, 02/29/84, Surface Temperature = 51°F.

	-				· · · · · ·									
6,	(nr Ul X)	æ. O	0.7	1.0	1.2	[:	1.2	1.2	1.1	1.1	0.9	6.0	1.0	0.2
86 10-3	(ur 01 x)	٠ <u>.</u>		1.6	1.6	1.5	1.3	1.5	1.6	1.5	1.3	1.2	1.4	0.2
δ ₅	(0 4)	7.7	2.0	2.4	2.5	2.2	2.0	2.5	2.5	2.4	2.4	2.1	2.3	0.2
δ ₄	01 0	y. 0	3.6	3.9	4.2	3.7	3.4	4.2	4.3	4.5	4.0	3.6	3.9	0.3
δ ₃ (ν 10 ⁻³ in)		- +	4.9	6.3	6.1	5.9	5.4	6.4	8.9	7.2	5.8	5.4	5.8	6.0
δ_2	7 6		8.1	8.3	8.2	7.9	7.5	8.7	9.2	6.6	7.3	6.9	8.1	0.9
δ_1 (x 10^{-3} in)	10.2		<u>-</u>	11.7	11.0	10.9	1	11.6	12.4	13.8	10.0	9.2	11.2	1.2
Load (psi)	78.3		81.1	82.5	83.6	80.9	81.7	82.4	80.9	78.2	84.7	77.9	81.1	2.2
Station			20	100	150	200	250	300	350	400	450	200	ı×	S

 $(x 10^{-3} in)$ 1.5 8. 2.0 2.0 ∞ δ_5 (x 10^{-3} in) 3.0 2.9 2.6 2.5 3.0 2.4 3.2 3.3 3.2 3.0 0.3 δ_t, (× 10⁻³ -3.9 5.6 4.9 0.5 4.8 4.3 5.0 5.0 5.4 Continued. in) 6_3 (x 10^{-3} 5.9 6.8 6.2 7.8 8.8 6.9 7.0 0.9 6.4 8. Table E6. in) 6₂ (× 10⁻³ · 10.0 9.6 9.0 10.2 10.7 11.5 8.6 8.5 9.4 $(x 10^{-3})$ 12.6 14.0 13.4 12.6 12.6 14.3 15.0 13.3 16.1 12.1 103.2 108.2 106.4 105.6 107.0 103.8 107.6 102.2 Load (psi) 107.4 106.7 104.7 105.7 Station 400 450 100 150 200 250 300 350 500 ix o

Table E6. Continued.

	T												
δ ₇ (x 10 ⁻³ in)	2.1	1.4	2.0	2.0	7.8	1.6	2.0	2.2	2.2	1.7	1.7	1.9	0.3
δ ₆ (x 10 ⁻³ in)	2.3	2.0	3.1	2.9	2.5	2.3	2.9	3.1	3.0	2.5	2.6	2.6	0.4
δ _s (x 10 ⁻³ in)	3.7	3.2	4.5	4.4	3.8	3.3	4.4	4.8	4.8	4.2	4.3	4.1	9.0
δ_{t_t} (x 10^{-3} in)	6.0	5.6	6.9	8.9	6.1	5.3	7.1	7.4	8.0	9.9	6.5	9.9	0.8
63 (x 10^{-3} in)	8.3	8.6	10.7	9.7	9.5	8.2	10.2	10.8	11.9	8.9	9.0	9.6	1.2
62 (x 10 ⁻³ in)	11.1	11.8	13.1	12.7	11.9	11.0	13.3	14.0	16.3	11.3	11.5	12.5	1.6
$(x 10^{-3} in)$	15.2	16.6	18.5	17.6	16.6	16.1	18.3	19.3	21.8	15.9	15.8	17.4	1.9
Load (psi)	140.2	145.0	146.0	141.8	145.0	142.2	141.9	138.9	145.5	142.6	136.6	142.3	3.0
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E6. Continued.

3,7 (x 10 ⁻³ in)	2.3	1.8	2.9	2.6	2.4	2.2	2.6	2.8	2.8	2.1	2.2	2.4	0.3
δ ₆ (x 10 ⁻³ in)	3.0	2.7	3.7	3.6	3.2	2.9	3.6	3.9	3.9	3.1	3.2	3.3	0.4
δ _s (x 10 ⁻³ in)	4.7	4.3	5.6	5.5	4.8	4.1	2.6	6.0	5.9	5.1	5.4	5.2	9.0
δ _μ (x 10 ⁻³ in)	7.7	7.0	8.3	8.4	7.5	6.5	8.6	9.1	9.4	7.9	7.9	8.0	0.8
δ ₃ (x 10 ⁻³ in)	10.1	10.8	11.5	11.9	11.1	9.6	12.2	12.8	13.6	10.6	10.7	11.4	1.2
6_2 (x 10 ⁻³ in)	13.3	13.9	15.7	15.1	14.3	13.0	15.9	16.6	18.0	13.4	13.9	14.8	1.6
δ_1 (x 10 ⁻³ in)	18.9	19.9	22.2	20.8	19.9	19.2	21.7	23.0	24.6	18.9	18.9	20.7	1.9
Load (psi)	173.0	177.4	174.6	168.8	176.2	170.4	171.3	167.4	169.6	173.5	165.2	171.6	3.8
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

6,	$(x 10^{-3} in)$	0.8	0.7	1.0	1.0	1.0	6.0	1.0	6.0	7	0.7	8.0	6.0	0.1
ر و	$(x 10^{-3} in)$	1.0	1.0	1.3	1.3	1.2	-	1.4	1.4	1.4			1.2	0.2
δ ₅	(x 10 ⁻³ in)	1.5	1.6	2.0	2.0	3.8	1.6	2.0	2.1	2.1	1.9	8.	8.	0.2
δ.μ.δ	(x 10 ⁻³ in)	2.6	2.8	3.1	3.3	3.0	2.8	3.4	3.6	3.8	3.3	3.1	3.2	0.4
63	(x 10 ⁻³ in)	4.1	4.7	5.2	5.2	5.0	4.5	5.4	5.8	6.4	4.9	4.8	5.1	9.0
6 ₂	(x 10 ⁻³ in)	5.7	6.5	7.0	6.9	6.9	6.4	7.4	8.0	8.9	6.3	6.3	6.9	0.9
δ ₁	(x 10 ~ in)	8.2	9.3	10.0	8.9	9.6	8.9	10.6	10.8	12.0	8.0	0.6	9.6	1,2
Load	(154)	9.59	68.1	68.9	68.8	67.5	67.3	8.69	71.0	71.2	8.69	69.1	8.89	1.65
Station		_	50	100	150	200	250	300	350	400	450	200	ı×	s
	Load δ_1 δ_2 δ_3 δ_4 δ_5 δ_6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load (psi) δ_1 (x 10-3 in) δ_2 (x 10-3 in) δ_3 	Load (psi) δ_1 (x 10 ⁻³ in) (x 10 ⁻³ in) (x 10 ⁻³ in) (x 10 ⁻³ in) (x 10 ⁻³ in) (x 10 ⁻³ in) δ_5 (x 10 ⁻³ in) (x 10 ⁻³ in) <th< td=""><td>Load (psi)δ_1 (x 10^{-3} in)$(x 10^{-3}$ in)65.68.25.74.12.61.51.00.868.19.56.95.23.12.01.31.068.88.96.95.03.01.81.21.067.59.66.95.03.01.81.21.0</td><td>Load (psi) (x 10⁻³ in) (x 10⁻³</td><td>Load (psi) (x 10⁻³ in) (x 10⁻³ i</td><td>Load (psi) (x 10⁻³ in) (x 10⁻³</td><td>Load (psi) (x 10⁻³ in) x 10⁻³</td><td>Load (psi) (x 10⁻³ in) (x 10⁻³ i</td><td>Load (psi) 61 a b b b b b b b b b b b b b b b b b b</td><td>Load (ps1) (x 10⁻³ in) (x 10⁻³ i</td></th<>	Load (psi) δ_1 (x 10^{-3} in) $(x 10^{-3}$ in)65.68.25.74.12.61.51.00.868.19.56.95.23.12.01.31.068.88.96.95.03.01.81.21.067.59.66.95.03.01.81.21.0	Load (psi) (x 10 ⁻³ in) (x 10 ⁻³	Load (psi) (x 10 ⁻³ in) (x 10 ⁻³ i	Load (psi) (x 10 ⁻³ in) (x 10 ⁻³	Load (psi) (x 10 ⁻³ in) x 10 ⁻³	Load (psi) (x 10 ⁻³ in) (x 10 ⁻³ i	Load (psi) 61 a b b b b b b b b b b b b b b b b b b	Load (ps1) (x 10 ⁻³ in) (x 10 ⁻³ i

	6,2	(x 10 ⁻³ in)	1.1	1.0	٦.4	- 1.3	1.3	-	1.3	1.4	1.4	1.1	1.2	1.2	0.1
		(x 10 ⁻³ in)	1.5	1.4	1.9	1.9	1.7	1.5	8	2.0	1.8	1.5	1.6	1.7	0.2
	δ5,	(x 10 ⁻³ in)	2.1	2.2	2.7	2.8	2.5	2.2	2.7	3.0	2.8	2.6	2.6	2.6	0.3
Continued.	ς η 9	(x 10 ⁻³ in)	3.5	3.8	4.3	4.5	4.1	3.7	4.6	5.0	5.1	4.3	4.3	4.3	0.5
Table E7. Cor	دي ع	(x 10 ⁻³ in)	5.5	0.9	6.8	6.7	6.4	5.9	7.2	7.7	8.2	6.3	6.5	9.9	0.8
	δ ₂ 3	(x 10 ⁻³ in)	7.4	8.2	9.2	6.8	8.7	8.1	9.6	10.5	11.3	8.1	8.4	6.8	1.1
	δ ₁	(x 10 ⁻² in)	10.8	12.1	13.4	12.4	13.0	12.0	14.0	14.7	15.9	11.3	12.4	12.9	1.5
	Load	(164)	95.1	0.96	97.0	9.96	97.0	94.3	98.0	97.2	98.0	95.9	0.96	96.5	1.14
	Station			20	100	150	200	250	300	350	400	450	200	ı×	S

Table E7. Continued.

Station	Load (psi)	δ_1 (x 10^{-3} in)	6 ₂ (x 10 ⁻³ in)	δ ₃ (χ 10 ⁻³ in)	δ _t (γ, 10 ⁻³ 3 μ)	δς (~ 10-3 ; ε,)	\$6 7. 5-01.2.	67
-	128.0	14.2	6.6	7.4	5.0	3.1	2.1	1.5
20	136.1	16.0	10.8	8.0	5.0	3.0	1.9	1.3
100	133.8	17.8	12.4	9.4	6.1	4.0	2.6	1.9
150	129.0	16.3	11.8	9.1	6.2	3.9	2.6	1.9
200	131.2	17.2	11.4	8.5	5.5	3.4	2.2	1.7
250	126.4	15.4	10.6	7.8	5.0	3.1	2.1	1.6
300	132.8	18.3	12.7	9.5	6.4	4.0	2.7	1.9
350	130.5	18.9	13.7	10.3	6.9	4.4	3.0	2.1
400	134.4	20.7	14.8	10.8	7.0	4.3	2.8	2.0
450	128.2	14.9	10.8	8.5	5.9	3.6	2.2	1.5
200	132.2	16.0	11.3	8.7	5.9	3.7	2.4	1.7
ı×	131.2	16.9	11.8	8.9	5.9	3.7	2.4	1.7
S	3.0	1.9	1.4	1.0	0.7	0.5	0.3	0.2

in) 10-3 2.0 2.3 0.3 2.2 2.6 2.5 2.2 2.0 2.5 2.8 in) 6 (x 10-3 : 3.9 3.6 2.9 3.0 0.4 3.0 3.4 in) δ₅ 4.5 4.8 9.0 5.6 5.5 3.9 5.0 5.1 × in) δ₄ (× 10⁻³ 8.6 7.2 7.3 0.9 6.9 7.8 8.7 Continued. 6.3 6.2 7.6 6.1 in) δ_3 , 10^{-3} Table E7. 13.2 10.3 10.6 10.8 1.3 10.3 11.4 12.4 9.8 9.1 × in) $\frac{\delta_2}{(\times 10^{-3})}$ 1.7 13.0 14.3 12.0 15.0 14.5 13.8 12.6 15.2 16.5 17.6 13.7 13.2 in) $(x 10^{-3})$ 18.4 25.0 18.2 19.6 20.5 2.2 20.8 21.9 22.7 20.2 17.6 19.9 21.7 3.6 Load (psi) 163.9 163.5 166.8 161.6 155.5 161.5 160.5 157.3 162.5 156.4 157.8 158.8 Station 100 150 200 250 300 350 400 450 500 50 $i \times \sigma$

Table E8. SR 97 - FWD Data, 03/19/84, Surface Temperature = 50°F.

										···			
6 ₇ (x 10 ⁻³ in)	8.0) 0)		6.0	2.0	, o		0 0	2.0	. α		D. C.
δ ₆ (x 10 ⁻³ in)		1.2	. m		1.2	1.0	2		1.2	1.0			1.5
δ_5 (x 10^{-3} in)	1.7	1.8	2.0	2.0	8.	7.5	1.9	2.0	6.	1.7	8.	α	0.2
δ ₄ (x 10 ⁻³ in)	3.0	3.1	3.3	3.5	3.0	2.6	3.3	3.5	3.4	2.9	3.1	3.2	0.3
δ ₃ (x 10 ⁻³ in)	4.6	4.8	4.8	5.1	4.8	4.2	4.8	5.3	5.8	4.3	4.6	4.8	0.4
6_2 (x 10 ⁻³ in)	5.9	9.9	9.9	6.5	6.5	5.9	6.5	7.2	7.8	5.4	6.1	6.4	9.0
$(x 10^{-3} in)$	8.0	9.1	9.5	9.1	9.0	8.0	8.7	9.6	10.6	7.2	8.4	8.0	0.9
Load (psi)	72.4	67.3	64.3	71.7	8.79	66.3	61.2	61.7	64.2	68.2	67.8	9.99	3.6
Station	_	50	100	150	200	250	300	350	400	450	500	ı×	S

Table E8. Continued.

6, (x 10 ⁻³ in)		1.1	1.3	1.3	1.2	1.0	1.2	1.4	1.3	=	1.2	1.2	0.1
δ ₆ (x 10 ⁻³ in)	5.1	1.5	1.9	8.	1.7	1.3	1.7	1.9	1.8	1.5	1.7	1.7	0.2
6_5 (x 10^{-3} in)	2.4	2.4	2.8	2.8	2.5	2.1	5.6	3.1	2.8	2.5	2.6	2.6	0.3
δ _μ (x 10 ⁻³ in)	4.0	4.0	4.5	4.5	4.0	3.5	4.3	4.9	4.8	3.9	4.3	4.2	0.4
6 ₃ (x 10 ⁻³ in)	5.9	6.1	6.5	6.5	6.1	5.4	6.2	7.3	7.7	5.7	6.3	6.3	0.7
6 ₂ (x 10 ⁻³ in)	7.6	7.8	8.7	9.8	8.2	7.5	8.2	9.5	10.1	7.2	8.0	8.3	0.9
6_1 (x 10 ⁻³ in)	10.6	11.3	12.3	12.0	11.7	10.6	11.3	13.2	14.3	10.0	11.3	11.7	1.2
Load (psi)	9.101	89.9	87.2	92.0	91.2	86.7	74.4	87.3	89.8	92.2	1.16	89.4	6.4
Station	-	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E8. Continued.

Station	Load (psi)	δ ₁ (x 10 ⁻³ in)	δ_2 (x 10 ⁻³ in)	6_3 (x 10 ⁻³ in)	$\delta_{t_{\rm h}}$ (x 10 ⁻³ in)	6_5 (x 10 ⁻³	in) $\begin{pmatrix} \delta_{\varepsilon} & \delta_{\gamma} \\ (x \ 10^{-3} \ in) \end{pmatrix} \begin{pmatrix} x \ 10^{-3} \end{pmatrix}$	δ_7 (x 10^{-3} in)
	137.1	14.0	10.2	7.9	5.4	3.4	2.3	1.6
50	122.9	14.9	10.4	8.0	5.4	3.2	2.0	1.4
100	117.9	16.8	11.5	8.8	6.1	4.0	2.6	2.0
150	121.5	15.6	11.3	8.7	6.1	3.8	2.5	1.8
200	125.1	15.8	10.8	8.2	5.5	3.5	2.3	1.7
250	113.2	13.9	9.6	7.1	4.8	3.0	1.9	1.5
300	105.7	15.5		8.4	0.9	3.8	2.4	1.8
350	106.6	17.2	12.3	9.6	6.7	4.4	2.8	2.0
400	113.0	18.4	13.0	10.0	6.5	4.0	2.6	2.0
450	119.5	13.3	9.6	7.7	5.5	3.5	2.2	1.5
200	117.4	14.8	10.6	8.4	5.9	3.7	2.4	1.7
ı×	118.2	15.5	10.9	8.4	5.8	3.7	2.4	1.7
S	8.8	1.5	1.0	0.8	9.0	0.4	0.3	0.2

Table E8. Continued.

							•	
Station	Load (psi)	δ_1	δ ₂ (× 10 ⁻³ in)	δ ₃	δμ (, ,) (, ,)	δ ₅	δ ₆	67
		/III 01 v)	2	(III 01 X)	(ni oix)	(ur orx)	(ur orx)	(ur 01 x)
_	157.3	16.9	12.1	9.4	9.9	4.3	2.9	2.0
20	151.0	18.5	12.8	9.6	6.7	4.1	2.6	1.9
100	147.8	20.5	14.2	10.9	7.6	5.1	3.5	2.5
150	147.0	19.0	13.5	10.7	7.5	4.8	3.2	2.3
200	148.3	19.0	12.9	6.6	6.7	4.4	3.0	2.2
250	140.3	16.0	11.4	8.6	5.9	3.8	2.5	1.9
300	137.4	18.0	13.1	10.4	7.3	4.8	3.2	2.4
350	138.0	20.9	15.0	11.8	8.3	5.6	3.7	2.7
400	138.1	22.0	15.3	4 ,	8.0	5.1	3.4	2.6
450	147.6	16.3	11.8	9.4	6.7	4.4	2.9	2.0
200	145.0	22.5	12.9	10.4	7.3	4.7	3.1	2.2
ı×	145.2	19.2	13.2	10.1	7.1	4.6	3.1	2.2
S	6.3	2.1	1.2	6.0	0.7	0.5	0.4	0.3

SR 2, Sunnyslope - FWD Data, 08/16/83, Surface Temperature = 99°F. Table E9.

Station	Load (psi)	δ_1 (x 10 ⁻³ in)	δ_2 (x 10^{-3} in)	δ ₃ (x 10 ⁻³ in)	δ ₄ (x 10 ⁻³ in)	6 ₅ (x 10 ⁻³ in)	δ ₆ (x 10 ⁻³ in)	67 (x 10 ⁻³ in)
,	83.84	26.9	19.6	15.7	11.7	7.8		3.5
50	82.69	20.8	15.0	11.5	8.7	5.6	3.4	2.1
100	91.95	11.2	6.5	5.6	4.8	3.7	2.8	2.1
150	84.42	13.6	9.8	8.3	6.7	4.8	3.3	2.3
200	81.38	17.2	13.1	10.9	8.4	5.9	3.9	2.7
250	87.03	18.4	14.1	11.7	9.1	6.5	4.6	3.1
300	86.45	19.7	15.0	12.8	10.0	7.3	5.1	3.6
350	78.63	18.7	14.8	12.7	10.0	7.4	5.3	3.7
400	87.32	14.4		9.5	7.0	4.9	3.3	2.4
450	82.98	18.3	13.8		8.1	5.2	3.3	2.3
200								
ı×	84.67	17.9	13.3	11.0	8.4	5.0	4.0	α
S	3.70	4.3	3.5	2.8	2.0	1.3	1.0	9.0

Table E9. Continued.

Station	Load	δ,	δ ₂	δ3	δ.	\$ 5	δ ₆	6,2
	(psi)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	×	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
_	110.78	34.2	25.0	20.2	15.2	10.5	7.2	4.8
20	110.49	28.7	21.0	16.5	12.8	8.5	5.2	3.3
100	123.23	15.4	6.3	7.9	6.8	5.5	4.2	3.2
150	112.52	18.6	13.6	11.7	9.6	7.2	5.0	3.6
200	110.64	22.9	17.5	14.7	11.6	8.3	5.7	4.1
250	117.01	24.7	19.3	15.9	12.8	6.3	6.7	4.5
300	116.57	26.2	20.0	17.0	13.7	10.2	7.2	5.2
350	110.78	25.9	20.2	17.5	14.1	10.7	7.7	5.5
400	115.56	19.3	15.1	12.8	10.1	7.3	5.1	3.7
450	110.78	24.3	18.5	15.2	11.4	7.8	5.2	3.6
200								
ı×	113.84	24.0	18.0	14.9	11.8	8.5	5.9	4.2
S	4.21	5.4	4.4	3.4	2.5	1.7	1.2	0.8

SR 2, Sunnyslope - FWD Data, 01/11/84, Surface Temperature = 34°F. Table E10.

6 ₇ (x 10 ⁻³ in)	2.2	2.2	1.4	1.8	1.8	1.6	1.9	1.9	1.6	1.5		1.8	0.3
δ _ε (x 10 ⁻³ in)	2.9	3.2	1.8	2.4	2.5	2.0	2.4	2.5	2.2	2.0		2.4	0.4
δ_5 (x 10^{-3} in)	4.3	4.7	2.1	3.2	3.6	2.8	2.9	3.2	3.0	3.0		3.3	0.7
δ _t (x 10 ⁻³ in)	6.4	6.1	2.5	3.9	5.0	4.0	3.6	4.2	4.4	4.5		4.4	1.1
6_3 (x 10 ⁻³ in)	8.8	7.3	2.8	4.3	6.4	0.9	4.7	5.2	5.7	6.1		5.7	1.7
6_2 (x 10 ⁻³ in)	11.0	8.2	3.0	5.0	7.7	7.4	5.9	6.1	8.9	7.6		6.9	2.1
$(\times 10^{-3} in)$	16.0	9.7	3.9	0.9	10.4	10.3	9.1	9.1	8.9	10.2		9.2	3.2
Load (psi)	75.4	75.2	76.6	75.3	70.8	66.1	8.99	62.2	64.7	9.99		70.0	5.3
Station	, —-	50	100	150	200	250	300	350	400	450	200	ı×	S

Table ElO. Continued.

Station	L	δ_1	δ ₂	δ3	δ.	δ 5	ô,	6,2
	(psi)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	$(x 10^{-3} in)$	×	(×	$(x 10^{-3} in)$
_	101.4	19.8	14.0	11.3	8.5	6*9	4.2	3.1
20	101.2	13.7	11.4	10.2	8.7	8.9	4.7	3.3
100	104.9	5.8	4.4	4.1	3.7	3.2	2.6	2.1
150	101.9	8.3	7.2	6.2	5.6	4.5	3.4	2.6
200	95.8	13.3	10.2	8.4	6.7	5.0	3.6	2.7
250	89.9	12.5	9.3	7.7	5.4	3.9	2.9	2.2
300	92.4	11.2	7.8	6.4	5.0	4.1	3.3	2.7
350	78.0	10.1	8.2	7.1	5.8	4.5	3.6	2.7
400	89.9	11.4	9.1	76.	0.9	4.3	3.1	2.3
450	90.9	12.9	10.0	8.3	6.2	4.4	3.0	2.3
200								
ı×	94.6	11.9	9.5	7.7	6.2	4.7	3.4	2.6
S	8.1	3.7	2.6	2.0	1.5	1.0	9.0	0.4

Table ElO. Continued.

	-												
6, (x 10 ⁻³ in)	4.3	4.8	3.0	3.8	3.9	3.3	3.9	4.0	3.5	3.3		3.8	0.5
δ ₆ (× 10 ⁻³ in)	5.9	7.0	3.8	5.1	5.2	4.2	4.9	5.3	4.5	4.5		5.0	6.0
6_5 (x 10 ⁻³ in)	8.3	9.7	4.6	9.9	7.1	5.6	0.9	9.9	6.2	6.4		6.7	1.4
δ ₄ (x 10 ⁻³ in)	11.7	12.4	5.2	8.0	9.5	7.6	7.4	8.4	8.4	8.9		8.7	2.1
6_3 (x 10 ⁻³ in)	15.7	14.4	5.7	9.1	11.7	10.5	9.5	10.1	10.6	11.6		10.9	2.8
6_2 (x 10 ⁻³ in)	18.8	16.2	6.2	10.0	14.0	12.6	11.0	11.7	12.4	13.8		12.6	3.4
$(x \ 10^{-3} \ in)$	26.3	18.7	8.0	11.6	17.9	16.8	14.8	14.2	15.5	17.6		16.1	4.8
Load (psi)	133.7	133.4	139.2	134.3	123.0	119.5	126.8	112.2	120.4	123.1		126.6	8.4
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table ElO. Continued.

Station	Load (psi)	$\frac{\delta_1}{(x \ 10^{-3} \ in)}$	6_2 (x 10 ⁻³ in)	6_3 (x 10^{-3} in)	δ _t (x 10 ⁻³ in)	δ_s (x 10^{-3} in)	δ ₆ (× 10 ⁻³ in)	δ ₇ (x 10 ⁻³ in)
_	160.3	32.0	22.8	19.2	14.3	10.3	7.3	5.3
20	161.3	23.9	20.5	18.5	15.7	12.6	0.6	6.2
100	171.5	10.1	8.0	7.4	6.7	5.9	4.9	3.9
150	162.2	14.8	12.8	11.7	10.3	8.5	9.9	5.0
200	144.0	22.0	17.2	14.5	11.8	0.6	6.7	5.0
250	142.3	20.5	15.4	12.9	9.5	7.1	5.2	4.1
300	152.6	18.6	13.8	11.6	9.4	7.6	6.3	5.0
350	141.6	17.7	14.7	12.8	10.6	8.5	8.9	5.2
400	145.3	18.9	15.4	13.2	10.6	8.0	5.9	4.5
450	146.7	21.5	17.2	14.5	11.4	8.3	5.8	4.4
200								
ı×	152.8	20.0	15.8	13.5	11.0	8.6	6.5	4.9
S	10.4	5.8	4.0	3.4	2.5	1.8	1.1	0.7

SR 2, Sunnyslope - FWD Data, 01/31/84, Surface Temperature = 43°F. Table Ell.

$6,$ (x 10^{-3} in)			9 8	0 6.	e e e	ب) · · · · · · · · · · · · · · · · · · ·			, ,	? -	-	o . C
δ_6 (x 10 ⁻³ in)	3.3	2.0	2.5		1.7	80.	0 0	6	2.0	7 1	•		0.5
δ ₅ (x 10 ⁻³ in)	4.6	2.5	3.4	3.5	2.2	2.2	2.2	2.4	2.7	2.1		α	0.8
$6_{t_{t}}$ (x 10 ⁻³ in)	6.0	2.9	4.4	4.8	2.9	2.6	2.6	2.9	3.5	2.6		3.5	1.2
$\begin{pmatrix} \delta_3 \\ (x \ 10^{-3} \ in) \end{pmatrix}$	7.1	3.1	5.3	6.3	4.1	3.1	3.0	3.3	4.1	3.1		4.2	1.5
6_2 (x 10^{-3} in)	8.1	3.5	5.8	7.6	4.8	3.7	3.3	3.7	4.7	3.5		4.9	1.8
6_1 (x 10^{-3} in)	9.3	4.6	7.0	9.7	6.5	4.7	4.0	4.5	6.2	4.4		6.1	2.1
Load (psi)	71.4	70.1	68.2	62.3	9.99	70.4	65.4	65.6	9.89	62.9		67.4	2.8
Station	-	20	100	150	200	250	300	350	400	450	200	ı×	S

Table Ell. Continued.

Station	Load (psi)	δ_1 (x 10^{-3} in)	$(\times 10^{-3} in)$	δ ₃ (x 10 ⁻³ in)	δ _μ (x 10 ⁻³ in)	6 ₅ (x 10 ⁻³ in)	δ ₆ (x 10 ⁻³ in)	6, (x 10 ⁻³ in)
_	96.9	13.9	11.7	10.4	8.7	8.9	4.9	3.4
50	99.3	6.5	5.1	4.8	4.3	3.7	3.1	2.4
100	94.3	10.0	8.3	7.6	6.4	5.0	3.7	5.6
150	88.3	13.3	10.5	8.8	6.8	5.1	3.6	2.7
200	94.1	9.1	6.7	5.8	4.2	3.2	2.4	1.9
250	98.6	6.8	5.1	4.4	3.8	3.2	2.6	2.1
300	8.06	5.7	4.9	5.7	3.8	3.3	2.7	2.2
350	92.2	8.9	5.4	4.9	4.2	3.5	2.8	2.2
400	92.7	8.8	6.8	0.9	5.0	4.0	3.0	2.2
450	87.2	6.5	5.1	4.5	3.9	3.2	2.5	2.0
200								
ı×	93.4	8.7	7.0	6.3	5.1	4.1	3.1	2.4
s	4.1	2.9	2.4	2.0	1.6	1.2	0.8	2.4

Table Ell. Continued.

in)													
6,7 (x 10 ⁻³ 1	5.0	3.5	3.9	4.0	2.9	3.2	3.2	3.3	3.4	3.0		3.5	9.0
δ _ε (x 10 ⁻³ in)	7.2	4.3	5.5	5.4	3.7	3.9	3.9	4.2	4.6	3.8		4.6	1.1
δ ₅ (x 10 ⁻³ in)	10.1	5.3	7.4	7.4	4.8	4.8	4.8	5.3	0.9	4.8		6.1	1.7
δ ₄ (x 10 ⁻³ in)	12.5	6.1	6.3	9.8	6.1	5.7	5.7	6.4	7.5	5.9		7.5	2.3
6_3 (x 10 ⁻³ in)	14.9	8.9	1	12.5	8.1	6.5	6.5	7.3	8.8	6.9		8.9	2.9
62 (x 10 ⁻³ in)	16.7	7.3	12.0	14.6	9.5	7.6	7.2	8.2	6.6	7.6		10.1	3.3
δ_1 (x 10 ⁻³ in)	20.1	9.3	14.4	18.3	12.6	6.7	8.5	10.0	12.9	9.4		12.5	4.0
Load (psi)	131.8	133.2	125.7	118.4	125.1	131.2	122.1	122.1	123.5	120.3		125.3	5.1
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table Ell. Continued.

6, (x 10 ⁻³ in)	6.4	4.4	5.2	5.5	3.7	4.2	4.2	4.3	4.4	3.9		4.6	0.8
δ ₆ (x 10 ⁻³ in)	5.6	5.7	7.1	7.0	4.6	5.0	5.1	5.5	5.8	4.9		0.9	1.4
δ _s (x 10 ⁻³ in)	12.6	6.9	9.6	9.6	6.1	6.1	6.2	6.9	7.8	6.3		7.8	2.2
δ ₄ (x 10 ⁻³ in)	16.0	7.9	12.0	12.4	7.8	7.2	7.4	8.3	9.6	7.7		9.0	2.9
6_3 (x 10 ⁻³ in)	18.3	8.7	14.1	15.9	10.4	8.4	8.5	9.6	11.4	8.9		11.4	3.5
6_2 (x 10 ⁻³ in)	21.2	9.4	15.5	18.5	12.0	6.7	6.9	10.7	12.8	10.0		12.9	4.2
6_1 (x 10^{-3} in)	25.6	11.5	18.6	23.1	15.8	12.3	11.0	13.0	16.1	12.3		15.9	5.1
Load (psi)	159.6	169.3	157.2	148.4	158.4	160.4	151.6	151.2	151.8	151.3		155.9	6.3
Station	-	20	100	150	200	250	300	350	400	450	200	ı×	s

(x 10⁻³, 2.7 0.4 in) 10-3 2.9 3.9 4.4 3.2 2.8 0.7 in) 65 (× 10^{-3} 5.2 2.6 0.9 6.2 6.1 6.3 5.0 4.9 4.1 5.0 4.1 1.2 in) $(x 10^{-3})$ 8.9 8.6 8.4 8.9 7.8 9. in) 10-3 8.6 3.5 6.3 10.3 10.5 8.9 2.6 in) 10-3 13.6 13.2 12.0 10.2 12.5 8.5 10.4 3.2 × in) $(\times 10^{-3})$ 12.4 5.3 8.8 17.7 17.9 15.7 12.8 16.7 10.6 13.5 4.3 76.4 80.4 9.9/ 70.1 69.5 6.69 70.8 69.1 Load (psi) 69.1 Station 100 150 200 250 300 350 400 450 500 ı× v

2, Sunnyslope, 02/21/84, Surface Temperature = 50° F.

SR

Table, E12.

3.0 2.8 0.5 3.8 3.6 3.8 3.9 3.0 5.8 5.6 5.8 6.0 8.9 1.5 8.5 in) 6^{4} (× 10^{-3} 2.4 11.8 11.9 11.2 10.5 4.4 Table E12. Continued. δ₃ , 10⁻³ 3.3 15.2 13.7 13.7 × in) $(\times 10^{-3};$ 18.0 13.3 15.7 13.3 in) $(\times 10^{-3})$ 13.9 5.4 22.6 16.2 16.4 23.1 23.1 20.1 90.2 99.3 106.4 91.1 Load (psi) Station 250 300 200 350 400 500 100 150 ı× o

5.5 5.0 5.3 5.7 4.6 4.0 $\begin{cases} \delta_6 \\ (x 10^{-3}) \end{cases}$ 5.9 8.0 7.6 8.2 6.5 6.4 1.2 5.7 in) 65 (x 10⁻³: 10.3 5.3 8.0 1.8 11.2 11.3 11.8 9.4 9.6 8.0 in) δ₄ (x 10⁻³ · 13.5 10.2 16.3 16.3 15.6 15.5 12.6 14.2 3.3 10.7 13.1 Table E12. Continued. in) $(\times 10^{-3})$ 6.9 20.4 20.8 19.8 18.9 15.4 18.2 16.1 13.1 16.2 in) $(x 10^{-3})$ 23.5 13.2 23.9 24.3 15.0 18.6 17.7 5.5 18.1 $(x 10^{-3} in)$ 9.8 21.3 22.4 30.8 26.9 18.5 16.1 30.4 31.1 27.0 23.4 137.8 128.7 127.6 120.3 119.5 121.2 122.5 113.8 119.9 121.2 123.2 9.9 Load (psi) Station 100 50 200 250 150 300 350 400 450 500 ı× o

in) $(x 10^{-3})$ 0.9 0.9 6.7 7.2 6.0 7.1 in) δ₆ (x 10⁻³ 8.6 1.5 5.6 7.5 10.3 9.5 9.6 10.4 8.4 7.3 9.1 in) $\frac{\delta_s}{(x \ 10^{-3})}$ 2.6 14.0 14.8 11.8 12.2 10.2 12.2 13.0 6.7 10.2 14.9 14.0 in) δ_t (x 10⁻³ : 4.0 19.5 17.6 13.4 16.4 16.9 7.9 12.9 20.4 20.3 19.4 15.6 Continued $(x 10^{-3} in)$ 19.0 5.4 20.0 8.0 15.0 25.4 25.9 24.4 23.6 22.1 16.2 Table E12. in) (× 10⁻³, 18.5 23.5 29.6 27.0 26.8 6.7 22.6 9.4 16.7 30.2 29.0 in) $\int_{-\infty}^{\delta_1} (x + 10^{-3})^2$ 22.3 28.9 12.3 20.2 37.5 38.6 37.8 33.7 26.4 32.3 8.7 152.2 169.3 156.0 147.4 146.4 148.9 148.6 152.2 147.8 148.7 7.0 157.0 Load (psi) Station 100 150 200 250 300 350 400 450 500 50 ı× v

SR 2, Sunnyslope - FWD Data, 02/29/84, Surface Temperature = $51^{\circ}F$. Tathle E13.

6,2	(x 10 ⁻³ in)	2.3	1.6	2.0	2.6	2.7	3.2	3.1	2.2	2.0	2.2		2.4	0.5
\$ e	(x 10 ⁻³ in)	3.3	2.0	2.9	3.8	3.7	4.6	4.4	3.3	3.0	3.1		3.4	8.0
δ ₅	(x 10 ⁻³ in)	6.4	2.6	4.0	5.7	5.6	6.7	6.3	5.0	4.6	4.4		5.0	1.2
δ ₄	(x 10 ~ in)	6.4	3.0	5.2	8.1	8.3	6.3	8.2	7.0	7.9	6.1		7.0	1.8
6 ₃	(nr ~ 01 x)	7.8	3.4	6.1	10.2	10.9	12.0	6.6	8.9	10.6	7.6		8.7	2.6
62	(ur olx)	8.9	3.7	6.9	12.0	14.6	14.5	11.2	10.3	13.2	8.9		10.4	3.4
6, 10-3 45)	(N1 01 X)	10.8	4.8	8.4	14.6	16.7	19.2	13.7	12.6	16.7	11.2		12.8	4.3
Load (psi)		75.6	78.3	74.3	6.69	70.4	71.5	70.2	6.69	63.0	8.99		71.0	4.4
Station		_	20	100	150	200	250	300	350	400	450	200	ı×	S .

Table El3. Continued.

Station	Load	δ1	δ ₂	δ ₃	49	δ.5	δ ₆	8,
	(psi)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
_	100.5	15.1	12.5	11.1	9.2	7.1	5.0	3.4
20	104.4	6.8	5.3	4.8	4.3	3.7	3.0	2.4
100	98.2	11.5	9.4	8.4	7.2	5.6	4.1	2.9
150	93.5	19.2	15.9	13.7	11.0	7.9	5.2	3.7
200	92.8	21.9	18.8	14.4	11.2	7.6	5.1	3.7
250	94.1	23.8	18.5	15.6	12.2	8.9	6.2	4.3
300	91.8	18.6	15.3	13.6	11.3	8.8	6.2	4.3
350	92.2	16.4	13.4	11.7	9.4	6.9	4.7	3.2
400	85.7	20.9	16.9	13.8	10.5	6.5	4.3	3.0
450	83.1	14.4	11.5	10.0	8.0	5.9	4.1	5.9
200								
ı×	93.6	16.9	13.8	11.7	9.4	6.9	4.8	3.4
S	6.4	5.1	4.2	3.3	2.4	1.6	1.0	9.0

Table E13. Continued.

Station	Load	گ1				δs	δ ₆	8,
	(psr)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	in)	$(x 10^{-3} in)$	×	$(x 10^{-3} in)$
, —	130.6	20.7	17.3	15.4	13.0	10.1	7.2	5.0
20	136.0	9.4	7.4	6.8	6.1	5.3	4.3	3.4
100	127.4	15.6	13.0	11.6	10.0	8.0	5.9	3.4
150	121.5	25.4	21.2	18.2	14.9	20.9	7.4 1	5.2
200	21.2	28.8	24.4	19.3	15.2	10.5	7.0	5.0
250	125.0	30.6	24.3	20.0	16.3	12.0	8.4	5.9
300	120.5	26.0	21.4	18.9	16.0	12.0	8.9	6.2
350	121.9	21.9	18.1	15.8	12.9	7.6	6.7	4.7
400	115.6	27.0	21.9	18.2	14.3	6.3	6.3	4.4
450	108.6	18.9	15.4	13.4	10.9	8.3	5.9	4.1
200								· · · · · · · · · · · · · · · · · · ·
ı×	122.8	22.4	18.4	15.8	13.0	9.6	8.9	4.8
S	7.6	6.5	5.4	4.2	3.2	2.1	1.3	0.8

Table El3. Continued.

6, (x 10 ⁻³ in)	6.3	4.3	5.5	9.9	6.3	7.4	7.9	6.2	5.8	5.4		6.2	1.0
δ ₆ (x 10 ⁻³ in)	9.1	5.5	9.7	9.4	8.8	10.3	11.3	8.6	8.2	7.5		9.8	1.6
6_5 (x 10^{-3} in)	12.7	6.8	10.2	13.5	13.1	14.6	15.7	12.1	11.9	10.4		12.1	2.5
δ ₄ (x 10 ⁻³ in)	16.3	7.8	12.8	18.3	19.3	19.8	20.2	16.0	17.6	13.6		16.2	3.8
δ ₃ (x 10 ⁻³ in)	19.3	9.1	14.6	22.3	23.6	23.5	24.0	19.4	22.0	16.5		19.4	4.8
62 (x 10 ⁻³ in)	21.7	9.3	16.4	25.9	29.6	29.1	26.9	22.1	26.2	18.8		22.6	6.4
6_1 (x 10^{-3} in)	25.8	11.8	19.6	30.8	35.3	36.3	32.6	26.5	32.1	23.0		27.4	7.7
Load (psi)	159.1	170.2	156.2	151.8	149.6	151.2	147.6	149.9	141.2	136.7		151.4	9.5
Station	,-	20	100	150	200	250	300	350	400	450	200	ı×	S

jn) 10-3 1.6 1.9 2.5 2.6 2.8 3.0 2.2 2.0 2.0 2.3 0.4 $(x 10^{-3})$ 3.8 2.8 2.8 SR 2, Sunnyslope - FWD Data, 03/06/84, Surface Temperature = 60°F. in) $(x 10^{-3})$ 2.6 3.9 5.6 5.7 4.8 4.6 4.2 6.1 6.1 4.9 in) $(\times 10^{-3})$ 5.2 7.9 8.4 8.5 3.1 8.1 6.7 7.1 in) 10.6 9.8 10.1 10.7 7.4 8.6 2.3 $(x 10^{-3})$ 8.7 9.7 6.3 8.7 δ_2 (x 10^{-3} in) 3.9 7.2 11.9 12.4 13.0 11.2 10.1 10.2 10.0 11.7 6_1 (x 10^{-3} in) 12.9 9.2 14.5 15.7 15.7 13.9 12.6 15.4 11.3 3.2 Table E14. 74.4 68.9 65.3 9.59 68.5 Load (psi) 67.3 65.6 8.99 6.99 63.7 2.9 Station 50 100 150 200 250 300 350 400 450 500 ı× S

Tâble E14. Continued.

$(x 10^{-3} in)$	3.3	2.3	2.8	3.6	3.5	3.9	4.3	3.1	3.0	2.8		3.3	0.6
δ ₆ (x 10 ⁻³ in)	4.9	3.0	3.9	5.3	5.1	5.7	6.1	4.4	4.1	4.0		4.6	0.9
6_5 (x 10^{-3} in)	7.2	3.8	5.6	7.8	7.7	8.3	8.6	9.9	6.7	5.8		6.8	1.4
δ ₄ (x 10 ⁻³ in)	9.8	4.5	7.3	10.8	11.2	11.5	11.3	9.1	8.6	8.1		9.4	2.2
δ ₃ (x 10 ⁻³ in)	12.1	5.0	8.8	13.5	14.2	14.4	13.6	11.5	13.0	10.2		11.6	2.9
6_2 (x 10 ⁻³ in)	13.9	5.5	6.6	15.7	16.4	17.2	15.3	13.3	15.7	11.7		135	3.6
6_1 (x 10 ⁻³ in)	17.3	7.8	12.9	20.0	20.7	21.6	18.9	16.2	21.1	14.8		17.1	4.4
Load (psi)	87.8	99.5	92.7	87.5	89.0	91.4	86.7	87.3	89.0	83.1		89.4	4.4
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	; У

Table El4. Continued.

6 ₇ (x 10 ⁻³ in)	4.9	3.3	4.0	5.3	4.9	5.5	6.2	4.5	4.3	4.1		4.7	0.8
δ_6 (x 10^{-3} in)	7.2	4.3	5.6	7.6	7.2	7.9	8.8	6.4	6.1	5.9		6.7	1.3
6_5 (x 10^{-3} in)	10.3	5.4	7.8	10.9	10.6	11.4	12.3	9.1	9.5	8.2		9.6	2.0
6^{4} (x 10 ⁻³ in)	13.8	6.3	10.1	14.8	15.2	15.4	15.9	12.4	13.4	11.1		12.8	3.0
6_3 (x 10 ⁻³ in)	16.8	7.0	12.0	18.3	19.0	19.2	19.1	15.5	17.2	13.6		15.8	3.9
$(\times 10^{-3} \text{ in})$	19.2	7.7	13.5	21.1	21.7	22.6	21.5	17.7	21.0	15.6		18.2	4.7
$(x 10^{-3} in)$	23.9	10.5	16.9	26.5	27.4	28.3	26.1	21.7	26.7	19.4		22.7	5.7
Load (psi)	110.9	130.2	118.2	113.5	116.6	119.2	113.0	113.8	116.6	107.0		115.9	6.2
Station		20	100	150	200	250	300	350	400	450	200	ı×	S

Table El4. Continued.

δ ₇ (x 10 ⁻³ in)	6.3	4.3	5.3	6.7	6.3	6.9	7.8	6.0	5.7	5.4		6.1	1.0
گو (× 10 ⁻³ نام)	6.9	5.6	7.4	9.6	0.6	9.7	11.2	8.3	8.0	7.5		9.8	1.6
6 ₅ (x 10 ⁻³ in)	13.2	6.9	10.2	13.6	13.1	13.9	15.6	11.7	12.0	10.5		12.1	2.4
δ ₄ (x 10 ⁻³ in)	17.6	8.1	13.0	18.3	18.9	18.9	20.2	15.6	16.5	13.9		16.1	3.6
6 ₃ (x 10 ⁻³ in)	21.3	8.9	15.4	22.5	23.4	23.4	24.3	19.1	21.0	17.0		19.6	4.8
6_2 (x 10 ⁻³ in)	24.1	8.6	17.2	25.9	26.9	27.1	27.1	21.8	25.3	19.4		22.5	5.6
6_1 (x 10^{-3} in)	30.0	13.3	21.3	32.3	33.7	34.1	32.8	26.5	31.8	23.7		28.0	6.8
Load (psi)	142.0	161.2	148.6	144.7	142.8	142.6	142.8	144.4	141.3	142.2		145.3	0.9
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E15. SR 2, Sunnyslope, 03/19/84, Surface Temperature = 50°F.

	Load (psi)	δ_1 (x 10 ⁻³ in)	δ_2 (x 10 ⁻³ in)	δ ₃ (γ 10 ⁻³ ;μ)	δ ₄	δ ₅	δ ₆	δ ₇
		/	2		Ì	(m) (m)	(ur orx)	(nr 01 x)
	71.4	11.7	9.5	8.3	8.9	5.1	3.6	2.5
20	62.7	4.4	3.5	3.1	2.8	2.4	1.9	1.5
001	71.2	7.5	6.2	5.5	4.7	3.7	2.6	1.9
150	63.1	14.9	12.2	10.3	8.0	5.8	3.8	2.7
200	64.2	16.5	12.7	10.6	8.2	5.7	3.7	2.6
250	68.9	19.2	15.1	12.4	9.2	6.4	4.3	3.0
300	67.9	14.1	11.6	8.6	8.0	6.1	4.2	2.9
350	68.1	12.1	10.2	8.7	6.9	4.9	3.1	2.2
400	8.99	16.5	13.1	10.7	8.0	4.7	3.0	2.0
450	69.2	11.5	8.9	7.6	5.9	4.3	2.8	2.0
200								
ı×	67.4	12.8	10.3	8.7	6.8	4.9	3.3	2.3
S	3.1	4.4	3.4	2.7	1.9	1.2	0.8	0.4

Table E15. Continued.

Station Load	δ_1	\$2	63	40	δ _S	ô.	6,
$\overline{}$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
93.8	15.8	13.0	11.5	9.4	7.2	5.1	3.5
93.8	8.7	5.1	4.4	4.1	3.5	2.8	2.2
95.6	10.6	8.9	8.0	6.9	5.4	4.0	2.8
87.5	20.2	16.5	14.2	11.1	8.1	5.6	3.8
86.7	21.7	16.8	14.3	11.2	8.0	5.3	3.7
94.6	24.4	19.4	16.3	12.3	8.7	0.9	4.2
88.8	19.2	15.7	13.6	11.1	8.5	6.1	4.1
90.2	16.0	13.5	11.8	9.4	6.9	4.4	3.2
89.9	21.9	17.0	14.3	11.0	6.9	4.4	3.1
91.7	15.0	12.1	10.4	8.3	6.1	4.3	3.0
91.3	17.4	13.8	11.9	9.5	6.9	4.8	3.4
3.1	5.1	4.3	3.5	2.5	1.6	1.0	9.0

Table El5. Continued.

δ ₇ (ii) (x 10 ⁻³ in)	5.1	3.1	4.2	5.6	4.6	5.9	5.9	4.8	4.5	4.4		4.8	
δ ₆ (x 10 ⁻³	7.4	4.1	5.8	7.9	6.9	8.3	8.5	6.5	6.5	6.1		8.9	
δ ₅ (x 10 ⁻³ in)		5.0	7.9	11.2	10.4	11.9	12.0	9.7	9.7	8.7		9.7	
$\delta_{\rm t}$ (x 10 ⁻³ in)	13.1	5.9	9.8	15.1	14.7	16.4	15.5	13.0	14.8	2.11.5	,	13.0	
δ ₃ (x 10 ⁻³ in)	16.0	6.4	11.3	19.1	18.7	21.5	18.8	15.9	18.8	14.2		15.1	
$6_2 \times 10^{-3} \text{ in}$	18.1	7.1	12.5	22.0	22.0	25.3	21.6	18.9	22.0	16.3		18.6	
δ ₁ (x 10 ⁻³ in)	21.8	9.7	14.9	26.9	28.2	31.6	26.2	21.3	27.9	19.9		22.8	
Load (psi)	122.1	124.5	126.1	113.5	115.4	124.5	116.6	119.2	121.4	120.0		120.3	
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	s

Table E15. Continued.

													1
6 ₇ (x 10 ⁻³ in)	9.9	4.1	5.4	7.0	6.5	7.2	7.5	6.2	5.9	5.7		6.2	1.0
δ _ε (x 10 ⁻³ in)	9.5	5.2	7.5	8.6	9.5	10.1	10.7	8.4	8.3	7.8		8.6	1.6
6 ₅ (x 10 ⁻³ in)	13.1	6.5	10.0	13.9	13.4	14.4	15.0	12.1	12.2	10.9		12.2	2.5
δ _μ (x 10 ⁻³ in)	16.8	7.5	12.4	18.6	18.5	19.6	19.5	16.0	18.1	14.1		16.1	3.8
6 ₃ (x 10 ⁻³ in)	20.0	8.2	14.3	23.2	23.1	25.9	23.5	19.4	22.5	17.3		19.7	5.3
62 (x 10 ⁻³ in)	22.4	9.4	15.7	26.5	56.9	29.7	26.9	24.1	26.5	19.8		22.8	6.2
δ ₁ (x 10 ⁻³ in)	27.0	14.6	18.7	32.6	34.5	37.1	32.4	26.1	32.9	23.9		28.0	7.3
Load (psi)	154.1	149.6	157.0	148.3	143.1	151.9	146.7	150.6	150.0	151.0		150.2	3.8
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

SR 2, MP 159.6 - FWD Data, 08/17/83, Surface Temperature = 72°F. Table E16.

67 (x 10^{-3} in)	2.8	4.0	3.4	3.3	3.2	2.8	2.7	2.4	3.1	3.3	4.1	3.2	0.5
δ _ε (× 10 ⁻³ in)	4.1	6.1	4.8	4.7	4.4	4.0	3.6	3.1	4.6	4.8	5.7	4.5	8.0
δ ₅ (x 10 ⁻³ in)	7.0	9.6	7.6	7.2	6.4	5.8	4.7	4.7	6.3	7.4	9.6	7.0	1.6
δ ₄ (in) (x 10 ⁻³ in)	12.4	14.7	12.2	11.4	9.2	7.8	6.5	9.9	9.4	11.4	14.6	10.6	2.8
δ ₃ (× 10 ⁻³	19.4	19.6	18.5	17.3	12.8	11.0	9.6	9.4	13.4	17.2	20.4	15.4	4.0
6_2 (x 10 ⁻³ in)	28.9	26.6	25.6	23.9	17.9	14.6	13.5	13.5	18.3	23.9	56.6	21.4	5.5
$(x \ 10^{-3} \ in)$	42.1	35.8	35.4	34.3	25.9	21.0	19.6	20.7	28.2	34.3	35.7	30.5	7.2
Load (psi)	80.1	89.5	88.2	87.9	92.2	98.0	97.6	94.6	94.1	88.0	89.2	9.06	5.0
Station	-	50	100	150	200	250	300	350	400	450	200	ı×	S

Table El6. Continued.

	Load	٥,1				ô _s	S _e	67
	(psi)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
	123.1	48.1	36.7	28.5	21.2	14.1	9.1	6.1
50 13	121.6	47.1	34.5	25.9	17.6	11.2	7.0	5.1
100	120.9	45.5	32.5	24.3	16.5	10.8	7.3	5.1
150 1	128.0	34.9	24.8	18.3	13.5	9.5	9.9	4.7
200	134.7	27.7	19.8	15.1	11.1	8.3	5.8	4.2
250 1	134.8	26.2	18.5	13.7	9.7	7.0	6.1	4.1
300	128.3	27.2	18.3	13.4	9.7	6.9	4.7	3.5
350 1	129.5	37.3	25.2	18.9	13.8	9.3	6.2	4.1
400 1	119.5	43.3	31.5	23.4	16.2	10.5	6.8	4.6
450 1	119.5	45.2	32.6	24.2	16.7	11.1	7.4	5.2
200								
۱×	126.0	38.2	27.4	20.6	14.6	6.6	6.7	4.7
S	5.9	8.8	7.0	5.4	3.7	2.2	1.2	0.7

Table E17. SR 2, MP 159.6 - FWD Data, 01/10/84, Surface Temperature = 34°F.

	6 ₇ (x 10 ⁻³ in)	1.1	1.9	1.6	1.4	1.4	1.3	1.2	1.1	1.2	1.4	1.4	1.4	0.2
e = 34°F.	δ ₆ (x 10 ⁻³ in)	1.4	2.3	2.0	1.9	1.8	1.6	1.5	1.3	1.4	1.8	1.9	1.7	0.8
2, MP 159.6 - FWD Data, UI/10/84, Surface Temperature	δ_5 (x 10^{-3} in)	1.8	3.0	2.5	2.2	2.3	2.0	1.8	1.6	1.9	2.2	2.2	2.1	0.4
/10/84, surta	δ_{μ} (x 10 ⁻³ in)	2.2	3.6	3.0	2.6	2.6	2.3	2.1	1.8	2.4	5.6	2.6	2.5	0.5
rwu uata, UI,	$6_3 (x 10^{-3} in)$	2.5	4.4	3.5	3.2	3.1	2.7	2.4	2.2	3.2	3.0	2.9	3.0	9.0
2, NF 139.6 -	$62 \times 10^{-3} \text{ in}$	3.6	5.9	4.5	4.4	4.2	3.2	3.4	3.7	4.5	3.9	3.8	4.1	0.8
iddle Ell. SK	$(x 10^{-3} in)$	6.8	9.4	8.4	7.4	8.0	6.9	6.3	6.9	7.4	0.9	6.3	7.3	1.0
5	Load (psi)	76.3	7.97	75.8	75.5	77.5	77.5	76.8	76.9	76.1	76.9	76.9	76.6	9.0
	Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E17. Continued.

Station	Load (psi)	$\begin{pmatrix} \delta_1 \\ (x \ 10^{-3} \ in) \end{pmatrix}$	$(\times 10^{-3} \text{ in})$	$\frac{\delta_3}{(x \ 10^{-3} \ in)}$	6μ (x 10^{-3} in)	6_5 (x 10^{-3} in)	δ ₆ (x 10 ⁻³ in)	6 ₇ (x 10 ⁻³ in)
_	104.6	9.1	5.2	3.7	3.3	2.6	2.1	1.6
20	110.1	13.1	8.7	9.9	5.5	4.5	3.5	2.8
100	108.6	11.6	6.8	5.4	4.6	3.8	3.0	2.4
150	107.4	10.8	6.4	5.0	4.0	3.3	2.8	2.2
200	110.4	11.3	6.2	4.8	4.0	3.4	2.8	2.2
250	110.3	10.0	4.6	4.1	3.5	2.9	2.4	
300	110.9	8.9	4.8	3.5	3.0	2.7	2.2	1.9
350	108.8	9.1	5.0	3.2	2.7	2.3	1.9	1.6
400	109.5	10.9	6.8	4.9	3.8	3.0	2.2	1.8
450	108.6	8.6	5.8	4.5	3.9	3.3	2.7	2.1
200	108.0	9.1	5.5	4.5	3.9	3.4	2.8	2.2
ı×	108.8	10.2	0.9	4.6	3.9	3.2	2.7	2.1
S	1.8	1.4	1.2	1.0	0.8	9.0	9.0	0.4

Table El7. Continued.

Station	Load	61		63	γ, 9	δ.	40	6,2
	(ps1)	(x 10 ⁻³ in)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	(x 10^{-3} in)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	$(x 10^{-3} in)$
,	140.4	13.0	7.8	5.7	4.9	4.0	3.2	2.5
20	151.8	18.6	12.7	6.6	8.2	6.7	5.3	4.2
100	149.4	16.8	10.1	8.1	6.8	5.6	4.5	3.5
150	147.1	15.1	9.5	7.3	5.9	5.0	4.1	3.3
200	151.0	15.8	9.1	7.1	5.9	5.0	4.0	3.2
250	151.8	14.0	6.9	0.9	5.1	4.3	3.5	3.0
300	154.8	12.4	6.9	5.3	4.5	3.8	3.4	2.7
350	148.6		7.0	4.8	4.0	3.5	2.9	2.3
400	152.1	15.5	10.0	7.4	5.8	4.5	3.4	2.7
450	149.0	12.4	8.5	8.9	5.8	4.9	3.9	3.2
200	147.3	13.0	8.2	8.9	5.8	5.0	4.1	3.3
ı×	149.4	14.7	8.8	6.8	5.7	4.8	3.8	3.1
S	3.8	2.1	1.8	1.4	1.2	0.9	0.7	0.5

Table El7. Continued.

6,7 (x 10 ⁻³ in)	3.3	5.4	4.6	4.2	4.2	3.8	3.5	3.1	3.5	4.0	4.3	4.0	0.7
δ ₆ (x 10 ⁻³ in)	4.1	7.0	5.9	5.3	5.2	4.6	4.2	3.7	4.4	5.2	5.5	5.0	0.9
6_5 (x 10^{-3} in)	5.2	8.9	7.4	6.4	6.4	5.6	5.0	4.5	5.8	6.4	9.9	6.2	1.2
δ _t (x 10 ⁻³ in)	6.4	10.8	0.6	7.8	7.7	6.7	5.8	5.2	7.5	7.6	7.6	7.5	1.5
63 (x 10^{-3} in)	7.5	13.0	10.7	9.6	9.3	7.8	8.9	6.2	9.6	8.8	8.	8.9	1.9
62 (x 10^{-3} in)	10.2	16.6	13.4	12.4	11.8	0.6	8.9	8.	13.0	11.2	10.8	11.5	2.4
$(x 10^{-3} in)$	16.4	23.8	21.6	19.4	19.8	17.1	15.6	15.2	19.5	15.8	16.6	18.3	2.8
Load (psi)	172.2	187.9	185.5	183.5	186.2	187.0	194.3	185.5	187.5	184.3	182.8	185.2	5.3
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

in) $(x 10^{-3})$ 3.2 2.8 2.4 2.6 2.4 2.6 2.5 2.9 2.5 2.0 0.4 in) 10-3 MP 159.6 - FWD Data, 02/21/84, Surface Temperature = 42°F. 4.4 3.5 3.6 3.0 3.6 4.0 3.4 0.5 × in) 10_3 5.3 4.8 5.3 4.4 3.8 3.8 5.4 5.9 0.9 × in) $(x 10^{-3})$ 9.3 5.5 5.6 9.5 8.2 10.1 6.7 8.2 1.8 8.1 8.1 8.1 in) $(\times 10^{-3})$ 16.9 15.6 13.4 12.2 9.8 8.5 12.6 13.6 15.8 2 13.1 $\dot{\infty}$ in) $(\times 10^{-3})$ 25.5 23.8 23.0 19.8 17.2 13.0 12.8 17.6 23.8 4.8 12.7 20.9 19.1 2, in) \mathbb{S} (× 10⁻³) 36.2 33.4 Table E18. 33.0 28.1 25.7 21.2 18.8 18.2 25.5 30.6 35.8 6.5 Load (psi) 64.3 8.99 65.7 71.4 78.5 75.7 76.4 70.1 68.1 71.0 5.1 Station 50 100 150 200 250 350 400 450 300 500 ı× S

Table E18. Continued.

86.3 94.3 89.2 92.7 97.9 103.7		14.8 15.7 13.3 11.8	7.9 9.9 7.7 7.1	4.4 6.5 5.2 4.6	3.0 4.5 3.5
94.3 89.2 92.7 97.9 103.7	·		9.9 7.7 7.1	6.5 5.2 5.0	4.5 4.0 3.5
89.2 92.7 97.9 103.7			7.7 7.1	5.2	3.5
92.7 97.9 103.7 103.8			7.1	5.0	3.5
97.9 103.7 103.8			· ·	5.0	
103.7	22.9 16.7		†)	3.6
103.8	17.4 13.3	9.3	6.2	4.3	3.4
	16.7	7.8	5.4	4.0	3.0
350 103.2 23.7	16.6 11.4	7.8	5.4	3.7	2.8
400 100.8 34.4	23.5 17.0	11.4	7.7	5.1	3.5
450 93.5 38.7	26.9 18.2	11.1	7.2	5.0	3.3
500 87.8 45.1	30.0 20.9	13.1	8.3	5.7	3.9
x 95.7 36.8	25.3 17.9		7.3	4.9	3.5
s 6.5 8.8	6.5 4.5	2.6	1.3	0.8	0.5

Table E18. Continued.

	T												
δ ₇ (x 10 ⁻³ in)	4.2	6.5	5.8	5.2	5.3	5.0	4.3	3.9	4.8	4.3	5.5	5.0	0.8
δ_e (x 10 ⁻³ in)	6.3	8.6	7.7	8.9	7.2	6.3	5.7	5.4	7.1	7.0	8.2	7.0	1.2
δ ₅ (x 10 ⁻³ in)	11.5	14.5	11.3	10.4	10.8	8.9	7.9	7.6	10.7	10.2	11.9	10.5	1.9
δ_{4} (x 10^{-3} in)	22.0	22.8	18.9	16.9	16.2	13.0	11.1	11.0	15.9	15.5	18.2	16.5	3.9
6_3 (x 10^{-3} in)	35.7	33.2	29.5	25.2	23.2	18.2	16.2	15.7	23.4	24.8	28.1	24.8	6.5
6_2 (x 10 ⁻³ in)	50.7	43.8	41.3	36.7	31.5	23.4	22.4	22.0	31.7	35.4	39.3	34.4	6.3
$(x \ 10^{-3} \ in)$	70.8	59.6	57.7	9.03	45.8	37.4	32.5	30.8	45.3	49.8	58.0	48.9	12.3
Load (psi)	112.2	122.6	119.8	127.1	131.3	138.3	141.6	138.0	139.4	129.5	121.9	129.2	9.5
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E18. Continued.

δ ₇ (x 10 ⁻³ in)	5.4	8.1	7.4	9.9	6.9	6.5	5.6	5.1	0.9	5.4	7.0	6.4	6.0
δ ₆ (x 10 ⁻³ in)	8.0	12.3	10.1	8.8	9.4	8.2	7.4	7.0	0.6	8.7	10.6	0.6	1.5
δ ₅ (x 10 ⁻³ in)	15.1	18.6	14.5	13.3	14.0	11.5	10.2	8.6	13.5	13.0	14.0	13.4	2.4
6^4 (x 10^{-3} in)	30.0	28.6	24.3	21.5	20.4	16.3	14.3	13.9	19.9	19.4	22.7	21.0	5.2
6 ₃ (x 10 ⁻³ in)	45.0	37.8	36.7	31.5	29.5	22.7	20.1	19.6	29.0	30.6	34.3	30.6	7.8
6_2 (x 10 ⁻³ in)	64.9	54.2	51.3	45.4	39.2	28.8	27.3	26.9	38.8	49.6	47.0	43.0	12.2
6_1 (x 10 ⁻³ in)	8.06	72.6	70.3	61.8	55.9	45.5	39.1	37.4	54.4	58.9	68.7	59.6	15.8
Load (psi)	146.1	151.0	148.4	155.7	162.0	168.1	169.9	169.6	169.9	158.0	147.1	158.7	9.7
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

 $(x 10^{-3})$ 3.0 3.0 2.9 2.4 2.2 2.3 2.8 2.0 2.5 0.4 in) $(\times 10^{-3})$ 2, MP 159.6 - FWD Data, 03/01/84, Surface Temperature = 48°F. 4.3 3.9 4.0 3.5 2.9 in) $(x 10^{-3})$ 5.2 3.9 5.9 6.3 5.3 in) $(\times 10^{-3})$ 10.9 7.8 6.9 5.7 10.9 8.9 2.4 $(\times 10^{-3})$ 15.4 16.5 18.3 18.9 9.4 9.5 19.9 4.6 10.7 14.3 19.1 in) $(\times 10^{-3})$ 23.3 22.2 26.9 26.7 16.3 12.4 14.0 15.6 28.6 11.7 20.7 $(x 10^{-3} in)$ SRTable E19. 36.5 31.6 39.8 36.9 19.9 20.6 17.6 24.8 42.9 30.6 9.5 Load (psi) 68.8 60.5 66.2 80.8 65.0 71.3 7.4 68.1 71.1 Station 100 150 200 250 300 350 400 450 500 ı×

247

Table E19. Continued.

	Г	**********											
δ ₇ (x 10 ⁻³ in)	2.8	4.3	4.1	4.2	3.5	3.4	3.1	2.8	2.9	3.5	3.9	3.5	9.0
8 ₆ (x 10 ⁻³ in)	4.2	6.3	5.7	5.9	4.9	4.3	4.1	3.6	4.4	5.0	5.6	4.9	6.0
6 ₅ (x 10 ⁻³ in)	7.3	10.0	8.7	8.9	7.3	6.2	5.7	5.1	6.7	8.5	8.9	7.6	1.5
δ ₄ (x 10 ⁻³ in)	13.5	15.8	14.9	15.6	10.9	9.3	8.1	7.4	6.6	14.4	16.0	12.3	3.3
δ ₃ (x 10 ⁻³ in)	23.0	23.4	24.9	24.7	15.9	12.8	12.1	10.9	14.8	23.5	26.0	19.3	5.9
6_2 (x 10 ⁻³ in)	34.9	30.8	35.1	34.4	21.6	16.4	17.1	15.9	20.7	32.9	36.9	27.0	8.6
6_1 (x 10^{-3} in)	50.6	43.5	51.4	47.6	31.7	26.1	24.5	25.6	31.7	47.2	51.4	39.5	11.2
Load (psi)	82.8	88.3	8.06	92:0	102.8	105.0	108.3	107.4	101.4	89.3	86.3	95.9	9.5
Station	- -	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E19. Continued.

.3 in)													
6 ₇ (x 10 ⁻³	4.1	6.2	5.9	5.7	5.1	5.0	4.5	3.9	4.0	4.7	5.5	5.0	0.8
δ ₆ (× 10 ⁻³ in)	6.2	9.1	8.3	8.3	6.9	6.2	5.9	5.2	6.3	7.1	8.1	6.9	1.0
δ ₅ (x 10 ⁻³ in)	11.1	14.5	12.6	12.6	10.2	8.6	8.1	7.3	9.7	11.9	12.7	10.8	2.2
δ_{t_h} (x 10^{-3} in)	20.4	22.5	21.4	21.4	15.2	12.6	11.5	10.6	14.3	19.5	22.0	17.4	4.6
δ_3 (x 10^{-3} in)	34.2	32.4	34.5	33.3	21.7	17.4	16.4	15.3	20.9	31.2	34.2	26.7	7.6
62 (x 10 ⁻³ in)	49.7	42.3	47.1	48.8	28.9	22.2	22.4	21.2	28.3	42.8	50.5	36.7	12.1
6 ₁ (x 10 ⁻³ in)	70.8	59.0	67.3	62.3	41.7	35.7	31.9	33.1	42.3	9.09	62.9	51.9	15.0
Load (psi)	108.9	114.7	118.2	117.0	128.4	144.4	141.0	139.4	137.0	120.3	115.1	125.8	12.6
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E19. Continued.

6, (x 10 ⁻³ in)	5.5	8.0	7.6	7.3	6.4	6.1	5.8	5.1	5.1	5.6	6.9	6.3	1.0
δ ₆ (x 10 ⁻³ in)	8.1	11.9	10.6	10.2	8.9	7.9	7.7	8.9	8.2	0.6	10.4	9.1	1.5
δ_5 (x 10^{-3} in)	14.8	18.8	16.3	16.3	13.1	10.8	10.3	9.5	12.8	15.1	16.5	14.0	2.9
δ _μ (x 10 ⁻³ in)	27.1	29.1	26.8	26.6	19.2	15.6	14.4	13.5	18.4	24.8	28.7	22.2	6.0
6_3 (x 10 ⁻³ in)	44.0	40.7	43.2	40.0	27.0	21.1	20.4	18.9	26.3	38.4	42.2	32.9	10.1
62 (x 10^{-3} in)	6.09	53.4	57.9	53.7	35.5	27.1	27.3	26.2	35.1	51.7	70.5	45.4	15.6
6 ₁ (x 10 ⁻³ in)	89.7	73.1	81.6	75.0	50.7	41.8	38.1	39.6	51.7	72.4	79.1	63.0	18.8
Load (psi)	134.5	138.3	135.4	135.8	152.9	169.4	171.7	168.3	165.7	147.4	142.0	151.0	15.1
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E20. SR 2, MP 159.6 - FWD Data, 03/07/84, Surface Temperature = $60^{\circ}F$.

Station Load	δ ₁	62	δ3	ر بای	. s	δ ₆	67
:	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	$(x 10^{-3} in)$
57.3	36.7	22.9	15.9	9.4	5.3	3.2	2.2
65.3	28.3	20.6	15.0	10.3	6.7	4.3	3.0
62.3	27.4	19.4	13.6	8.3	5.2	3.5	2.5
63.4	26.2	17.2	12.5	8.0	5.1	3.5	2.5
67.0	21.2	13.7	11.9	6.7	4.6	3.2	2.3
71.0	17.7	12.2	8.3	5.9	4.2	2.9	2.2
73.3	17.9	10.9	7.6	5.2	3.7	2.8	2.1
6.69	18.5	11.3	7.7	5.2	3.6	2.6	2.0
70.5	23.8	15.5	10.9	7.4	5.0	3.2	2.2
65.7	- 28.1	18.9	13.2	9.8	5.6	3.6	2.5
66.2	29.4	19.5	13.3	8.7	5.6	3.7	2.7
66.2	25.0	16.6	11.8	7.6	4.8	3.3	2.4
4.5	5.9	4.1	2.9	1.7	0.7	0.5	0.3

Table E20. Continued.

δ.μ		,
_	0^{-3} in) $(x 10^{-3}$	
	23.6	32.9 23.6
	20.4	28.5 20.4
	18.3	27.2 18.3
	17.6	25.2 17.6
	13.3	19.4 13.3
	11.2	16.7 11.2
	10.7	15.0 10.7
	10.8	15.2 10.8
	15.5	20.9 15.5
	17.3	25.6 17.3
	18.7	26.4 18.7
	16.1	23.0 16.1
	4 2 F	5.9 4.2

Table E20. Continued.

6, 10-3 12)	4.5	0.9	5.4	5.2	4.8	4.6	4.3	3.8	4.1	4.7	5.2	4.8	9.0
δε (γ. 10 ⁻³ 3μ)	7.0	9.1	7.4	7.6	6.8	6.2	5.7	5.2	6.3	7.0	7.6	6.9	1.1
δ _s (x 10 ⁻³ in)	11.9	14.2	11.1	11.2	9.8	8.7	7.8	7.4	10.1	10.9	11.3	1.04	1.9
δ_{4} (x 10^{-3} in)	21.3	21.4	17.6	17.3	14.3	12.2	10.8	10.7	14.8	17.3	17.7	15.9	3.7
δ_3 (x 10^{-3} in)	31.5	27.8	25.4	23.9	18.6		15.0	15.1	20.6	23.4	23.9	22.7	5.0
$6_2 \times 10^{-3} \text{ in}$	42.2	39.1	34.6	32.9	26.4	22.5	20.2	20.6	28.3	34.0	35.3	30.6	7.5
	70.8	53.6	53.5	51.0	40.3	32.6	31.9	32.5	42.4	50.1	52.1	46.4	11.9
Load (psi)	105.0	114.7	122.2	120.2	127.0	128.2	130.8	127.7	128.9	118.3	117.3	121.8	7.8
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E20. Continued.

Station	Load (nei)	δ ₁	6 ₂	δ ₃	δ ₄	δ ₅	, o e	6,7
	(i ed)	(x 10 ⁻² in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻² in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ~ in)
	136.0	91.0	64.9	42.4	28.7	16.1	93.	5.9
50	136.3	66.7	46.1	34.3		18.5	11.9	7.9
100	136.8	65.2	41.5	30.4	22.3	14.4	7.6	7.0
150	144.8	63.2	41.5	30.3	22.3	14.5	6.6	6.8
200	153.5	49.5	33.2	23.3	18.3	12.7	6.8	6.3
250	163.0	40.2	28.1	19.6	15.7	11.4	8.1	0.9
300	158.3	38.3	24.9	18.4	13.8	10.0	7.5	5.6
350	156.5	39.3	25.2	18.4	13.6	9.6	6.9	5.0
400	154.5	50.7	34.6	25.2	18.5	12.8	7.9	5.1
450	143.8	61.2	38.3	29.1	21.8	13.8	8.9	6.1
200	141.9	63.7	38.5	30.3	22.4	14.4	9.7	6.5
ı×	147.8	57.2	37.9	27.4	19.7	13.5	0.6	6.2
S	9.7	15.7	11.3	7.4	4.7	2.6	1.4	0.8

	67	$(x 10^{-3} in)$	1.9	2.9	2.5	2.5	2.2	2.2	2.0	1.9	2.2	2.4	2.5	2.3	0.3
= 49°F.	, o e	$(x 10^{-3} in)$	2.7	4.2	3.6	3.6	3.0	2.9	2.7	2.6	3.1	3.4	3.5	3.2	0.5
FWD Data, 03/21/84, Surface Temperature	, especial series of the serie	$(x 10^{-3} in)$	4.5	9.9	5.2	5.3	4.4	4.2	3.5	3.4	4.8	5.4	5.5	4.8	0.9
21/84, Surface	ς, ,	$(x 10^{-3} in)$	8.2	10.4	8.5	8.4	6.5	6.2	4.9	4.8	7.2	8.4	8.1	7.4	1.7
'WD Data, 03/2	ر م	(x 10 ⁻³ in)	14.0	15.2	13.4	12.3	8.6	8.3	7.3	7.1	10.4	12.4	11.3	11.0	2.7
2, MP 159.6, F	δ ₂	(x 10 ⁻³ in)	21.6	21.5	19.1	17.4	13.7	12.6	10.9	10.2	15.4	17.3	17.7	16.1	3.9
Table E21. SR	δ ₁	(x 10 ⁻³ in)	33.4	28.8	27.8	26.2	20.2	18.3	16.5	16.7	21.9	26.9	25.2	23.8	5.5
Та	Load (nsi)	(154)	56.3	64.7	64.3	65.3	69.1	8.89	69.2	7.17	68.5	64.3	64.2	0.99	4.1
	Station		_	20	100	150	200	250	300	350	400	450	200	ı×	S

3.3 3.6 3.0 3.0 3.3 4.3 3.6 3.6 3.3 in) δ_ε (× 10⁻³ · 4.9 3.9 4.5 6.3 5.2 5.2 in) $(x 10^{-3})$ 7.8 7.8 6.9 9.9 4.9 9.8 7.6 7.8 8.9 δ_{μ} (x 10⁻³ in) 10.9 10.3 12.2 9.8 7.4 **6.9** 12.2 9.1 12.8 15.2 12.4 Table E21. Continued δ_3 (x 10^{-3} in) 17.8 16.0 10.5 17.8 14.5 10.7 15.1 19.4 12.1 in) 24.8 22.6 24.5 19.5 15.2 14.2 24.4 30.9 30.0 27.3 in) $\begin{cases} \delta_1 \\ \times 10^{-3} \end{cases}$ 33.5 23.0 24.0 31.0 28.9 25.7 39.5 36.1 40.3 93.3 89.9 99.0 100.4 100.2 100.4 Load (psi) 77.0 90.6 Station 400 450 500 200 250 300 350 100 150 ı× o

Table E21. Continued.

δ ₇ (x 10 ⁻³ in)	3.8	6.1	5.2	5.2	4.8	4.8	4.3	3.8	4.1	4.8	5.2	4.7	7
δ ₆ (x 10 ⁻³ in) (x	5.7	9.5	7.6	7.6	6.7	6.3	5.8	5.2	6.4	7.1	7.7	6.9	
δ_s (x 10 ⁻³ in)		14.1	1.11	11.3	9.6	0.6	7.7	7.2	10.0	11.2	11.5	10.3	0
δ_{μ} (x 10^{-3} in)		21.7	17.9	17.5	14.2	13.0	10.7	10.3	14.8	17.6	17.5	15.8	9
63 (x 10^{-3} in)		31.0	27.9	25.1	20.4	17.1	15.1	14.6	21.2	25.4	20.3	22.5	5.7
6_2 (x 10 ⁻³ in)	43.2	40.4	32.9	32.2	26.6	23.7	20.8	19.3	28.4	33.0	33.3	30.3	7.5
6_1 (x 10^{-3} in)	66.1	54.8	53.9	48.9	39.2	34.3	30.8	31.6	42.0	51.0	48.3	45.5	11.0
Load (psi)	107.0	125.5	123.7	123.1	133.6	136.5	134.5	134.5	134.2	124.4	121.6	127.1	8.7
Station	-	50	100	150	200	250	300	350	400	450	200	ı×	s

Table E22. SR 172, MP 2.0, FWD Data, 08/17/83, Surface Temperature =75°F.

Station	Load (psi)	6_1 (x 10^{-3} in)	62 (x 10^{-3} in)	6_3 (x 10^{-3} in)	δ ₄ (x 10 ⁻³ in)	δ _s (x 10 ⁻³ in)	8 ₆ (x 10 ⁻³ in)	δ ₇ (x 10 ⁻³ in)
_	82.0	37.7	23.0	14.8	8.6	0.3	3.3	2.5
20	79.8	32.8	21.9	15.7	9.4	5.0	3.5	2.4
100	73.6	59.4	38.3	24.6	13.4	6.3	3.9	3.0
150	75.3	48.1	31.1	20.4	11.7	6.3	4.2	3.2
200	72.8	45.0	29.9	19.9	11.8	6.7	4.0	3.0
250	72.3	53.9	35.9	24.4	14.5	7.4	4.3	3.0
300	72.4	52.7	36.6	24.7	14.6	8.1	4.9	3.4
350	74.3	57.2	38.2	25.5	15.0	7.4	4.6	3.4
400	73.1	67.0	43.7	29.1	16.3	8.3	4.5	3.0
450	74.1	55.0	37.7	26.5	15.9	8.5	5.1	3.6
200	72.0	43.1	31.9	24.7	17.2	10.8	6.9	5.0
ı×	74.7	50.5	33.4	22.8	13.5	7.2	4.5	3.2
S	3.2	10.0	6.7	4.5	2.8	1.7	1.0	0.7

Table E22. Continued.

6, (x 10 ⁻³ in)	3.7	3.5	4.5	4.9	4.5	4.3	4.8	4.2	4.2	4.8	9.9	4.6	0.8
δ_6 (x 10^{-3} in)	4.7	5.0	5.8	6.5	6.2	6.3	7.1	6.3	6.3	8.9	8.8	6.3	1.1
δ ₅ (x 10 ⁻³ in)	7.0	9.2	9.1	9.6	10.1	11.0	11.9	10.7	11.8	11.5	13.6	10.4	1.9
δ_{4} (x 10^{-3} in)	12.1	13.8	19.1	17.4	17.7	21.4	23.4	20.5	23.6	22.3	21.6	19.3	3.8
6_3 (x 10^{-3} in)	20.4	22.1	34.3	28.9	27.7	33.8	35.0	36.5	40.9	37.1	31.0	31.6	6.3
$(x 10^{-3} in)$	30.7	30.9	53.7	44.3	42.3	50.9	51.5	53.3	60.7	52.5	40.3	46.5	9.7
$(x 10^{-3} in)$	48.0	45.0	82.0	66.2	61.1	75.0	71.9	77.8	91.0	76.6	54.3	68.1	14.6
Load (psi)	111.8	108.0	105.7	107.6	104.4	103.7	101.4	105.0	105.9	107.4	103.1	105.8	2.8
Station	-	50	100	150	200	250	300	350	400	450	200	ı×	S

 $(x 10^{-3})$ 1.4 1.6 1.0 in) $\frac{\delta_6}{(\times 10^{-3})}$ 1.6 1.6 1.5 2.2 1.3 1.6 FWD Data, 01/10/84, Surface Temperature = 34°F. in) (× 10⁻³ 1.9 1.8 2.8 1.5 1.9 2.0 1.3 1.9 0.4 in) (x 10⁻³, 3.5 1.8 2 in (10-3 2.8 9.0 4.2 2.3 2.8 3.0 2.8 2.6 ı in) SR 172, MP 2.0 3.6 0.8 δ_2 × in) $(x 10^{-3})$ 5.9 2.3 5.4 1.3 4.5 Table E23. 5.8 4.9 5.5 6.5 7.2 5.7 72.8 66.2 73.8 73.2 75.0 72.6 75.2 73.0 75.8 70.07 74.7 Load (psi) Station 150 200 250 300 350 400 500 100 ı× o

260

Table E23. Continued.

5	=												
6, 10-3	(x 10	1.6	1.9	1.9	1.8	2.1	2.6	1.5	1.7	1.9	1.4	1.8	0.3
δ ₆ (ν, 10 ⁻³ 3 3 μ)	2.4	2.0	2.4	2.3	2.2	2.7	3.3	1.9	2.2	2.4	1.7	2.3	0.4
δ ₅ (γ 10 ⁻³ in)	2.8	2.4	2.9	2.8	2.6	3.4	4.4	2.4	2.8	3.0	2.0	2.9	9.0
δ ₄ (x 10 ⁻³ in)	3.3	3.0	3.4	3.3	3.2	4.2	5.5	2.9	3.5	3.6	2.3	3.4	0.8
δ ₃ (x 10 ⁻³ in)	4.1	3.9	4.0	4.2	4.1	5.1	9.9	3.7	4.4	4.4	2.5	4.3	1.0
6_2 (x 10^{-3} in)	5.7	5.3	4.9	5.0	5.2	6.2	8.1	4.5	5.8	5.5	2.8	5.4	1.3
δ_1 (x 10^{-3} in)	10.7	8.1	6.8	7.3	8.1	8.6	11.2	7.1	9.3	8.0	3.8	8.2	2.1
Load (psi)	117.8	97.8	103.6	104.7	95.0	107.1	106.0	108.6	104.0	102.0	93.6	104.2	6.1
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E23. Continued.

Station	Load (psi)	δ ₁ (x 10 ⁻³ in)	62 (x 10^{-3} in)	δ ₃ (x 10 ⁻³ in)	δ _μ (x 10 ⁻³ in)	δ _s (x 10 ⁻³ in)	δ _ε (x 10 ⁻³ in)	δ ₇ (x 10 ⁻³ in)
_	162.9	16.2	8.7	6.2	4.9	4.1	3.4	2.9
20	132.3	11.8	7.7	5.8	4.4	3.5	2.9	2.3
100	141.1	10.5	7.4	6.1	5.1	4.3	3.5	2.8
150	139.6	11.0	7.6	6.1	5.0	4.1	3.4	2.9
200	130.6	12.1	7.8	6.2	5.0	4.0	3.3	2.7
250	149.8	14.7	9.8	8.0	9.9	5.3	4.1	3.2
300	150.0	17.5	12.7	10.6	8.6	8.9	5.3	3.9
350	151.8	11.0	7.1	5.7	4.6	3.7	2.9	2.3
400	145.6	14.2	9.0	7.1	5.5	4.4	3.3	2.6
450	137.4	11.8	8.3	6.7	5.5	4.5	3.6	2.8
200	136.4	5.6	4.2	3.7	3.3	3.0	2.6	2.2
ı×	143.5	12.4	8.2	9.9	5.3	4.3	3.5	2.8
S	9.7	3.2	2.0	1.7	1.3	1.0	0.7	0.5

Table 23. Continued.

Station	Load (psi)	δ_1 (x 10^{-3} in)	62 (x 10 ⁻³ in)	δ ₃ (x 10 ⁻³ in)	$6_{\rm t}$ (x 10 ⁻³ in)	δ _s (x 10 ⁻³ in)	δ _ε (x 10 ⁻³ in)	67 (x 10^{-3} in)
_	188.1	21.2	11.5	8.1	6.3	5.4	4.5	3.7
20	163.9	15.8	10.1	7.7	5.8	4.6	3.8	3.1
100	174.6	13.9	6.6	8.1	6.7	5.7	4.6	3.7
150	165.8	14.4	10.0	8.3	9.9	5.4	4.5	3.7
200	168.3	15.8	10.5	8.3	9.9	5.3	4.3	3.5
250	185.1	19.2	13.0	10.6	8.7	7.0	5.4	4.2
300	183.7	23.3	17.2	14.2	11.4	0.6	7.0	5.2
350	186.8	14.4	9.5	7.6	0.9	4.8	3.8	3.1
400	177.6	18.7	11.9	9.4	7.3	5.7	4.4	3.4
450	166.4	15.2	11.0	8.8	7.1	5.6	4.6	3.7
200	170.4	7.2	5.5	4.8	4.3	3.9	3.3	2.8
ı×	175.5	16.3	10.9	8.7	7.0	5.7	4.6	3.6
s	9.5	4.3	2.8	2.3	1.8	1.4	1.0	0.6

in) (x 10⁻³ 3.5 2.9 2.3 2.4 3.5 2.9 0.7 2.6 2.0 2.8 2.3 3.0 4.4 in) $(\times 10^{-3})$ SR 172, MP 2.0 - FWD Data, 03/01/84, Surface Temperature = 46°F. 4.8 4.3 3.6 3.3 4.3 5.2 3.3 7.6 in) $(x 10^{-3})$ 5.6 8.0 9.8 4.5 18.8 12.8 6.3 7.4 14.2 9.9 13.4 10.1 in) 10-3 36.5 32.2 27.9 12.6 13.9 19.9 13.2 16.7 20.1 8.7 × in) . 10-3 13.6 20.5 16.8 29.9 42.6 28.7 52.4 44.1 16.2 × in) 6_2 (x 10^{-3} . 56.6 26.4 68.3 55.5 29.9 70.9 42.1 24.6 21.1 38.3 40.1 in) $(\times 10^{-3})$ 46.0 28.0 43.5 57.7 89.7 89.9 72.7 37.1 39.9 74.7 52.1 Table E24. 56.0 52.6 49.8 54.3 57.3 63.3 56.8 4.2 54.3 56.5 62.0 57.2 Load (psi) Station 350 250 300 400 450 500 50 100 150 200 $i \times o$

Table E24. Continued.

	-												
6,7 (x 10 ⁻³ in)	3.5	2.8	4.1	4.8	3.6	4.0	0.9	4.0	3.0	4.1	4.4	4.0	6.0
δ ₆ (x 10 ⁻³ in)	4.1	4.6	6.1	6.9	4.8	5.0	10.5	0.9	5.4	4.4	6.1	5.8	1.8
δ_5 (x 10^{-3} in)	5.9	8.9	13.2	16.4	0.6	10.1	24.7	18.5	16.3	6.9	8.6	12.7	5.7
δ _t (x 10 ⁻³ in)	11.5	15.3	25.1	33.5	17.8	22.0	46.2	40.8	35.4	16.1	17.2	25.5	11.6
63 (x 10^{-3} in)	21.0	22.1	37.5	51.3	28.7	36.6	62.9	64.5	54.3	28.5	25.6	39.6	16.6
62 (x 10^{-3} in)	32.0	28.3	48.3	67.0	39.1	51.5	84.1	80.9	6.99	39.9	34.7	52.1	19.7
6_1 (x 10 ⁻³ in)	50.6	37.1	66.2	90.4	56.2	73.3	99.1		89.7	58.7	46.7	8.99	20.8
Load (psi)	83.7	76.4	77.5	78.2	79.4	78.3	75.4	72.3	75.4	77.5	89.0	78.5	4.5
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	s

Table E24. Continued.

in)										*********			
6,7 (x 10 ⁻³ i	5.1	4.1	5.8	6.9	5.6	5.7	8.5	4.9	4.1	5.5	5.5	5.6	1.2
\$ ₆ (x 10 ⁻³ in)	5.9	9.9	9.8	9.7	7.0	7.2	14.4	7.5	7.1		7.6	7.9	2.4
δ _s (x 10 ⁻³ in)	8.5	12.4	17.8	21.2	13.0	14.2	33.0	23.4	21.3	8.6	12.2	16.9	7.4
δ_{μ} (x 10 ⁻³ in)	16.1	21.3	33.2	42.8	24.6	30.9	60.7	52.0	45.7	20.8	21.3	33.6	14.7
δ ₃ (x 10 ⁻³ in)	27.6	30.8	51.6	58.0	36.3	47.7	87.5	79.3	83.6	32.4	31.9	51.5	22.7
6_2 (x 10 ⁻³ in)	40.8	40.8	74.3	8.89	52.4	8.69	111.1	95.2	101.7	53.5	49.9	6.89	24.6
6_1 (x 10 ⁻³ in)	64.9	51.6	88.1	88.0	75.0	97.3		113.9	115.5	76.7	58.6	83.0	21.8
Load (psi)	109.0	104.7	111.1	112.4	112.7	110.0	108.8	104.6	104.8	112.4	119.8	110.0	4.5
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E24. Continued.

						411					2.00		
6 ₇ (x 10 ⁻³ in)	6.7	5.3	7.5	8.8	7.3	7.2	. 10.1	6.1	4.7	6.1	6.7	7.0	1.5
δ ₆ (× 10 ⁻³ in)	7.8	9.8	10.9	12.5	9.3	9.1	18.2	8.5	7.8	6.4	8.9	8.6	3.2
δ_5 (x 10^{-3} in)	10.9	15.8	21.9	25.6	16.4	17.9	40.2	27.0	25.2	6.6	14.3	20.5	8.8
δ _t (x 10 ⁻³ in)	20.2	27.1	40.5	51.1	30.7	39.1	73.9	60.7	54.9	24.6	25.4	40.7	17.4
63 (x 10^{-3} in)	33.5	41.7	6.09	56.4	44.9	59.5	80.7	74.3	6.98	44.7	48.1	57.4	17.1
$\begin{cases} \delta_2 \\ (x \ 10^{-3} \ in) \end{cases}$	47.5	48.0	78.6	72.6	67.2	84.4	89.5	0.06	14. Maria (1. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1	64.4	49.1	69.1	16.8
6_1 (x 10^{-3} in)	78.3	65.5	88.0	83.3	92.0	93.1		126.5	118.3	94.3	0.69	8.06	19.4
Load (psi)	132.9	135.5	143.6	144.7	144.1	140.9	140.6	137.7	132.9	148.4	145.8	140.6	5.3
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

in) (x 10⁻³ 0.5 2.6 2.8 2.6 3.3 2.9 3.6 2.8 2.4 2.4 in) (× 10⁻³ 2.0 - FWD Data, 03/07/84, Surface Temperature = $60^{\circ}F$. 4.9 3.8 0.9 3.3 3.9 3.7 3.1 3.1 δ_5 (x 10^{-3} in) 12.8 8.9 11.9 3.8 3.5 5.6 5.9 5.5 6.7 8.4 8.4 16.1 6.7 in) (× 10⁻³ 13.6 25.6 23.0 29.9 16.8 15.2 16.5 11.3 11.9 10.5 15.7 δ_3 (x 10^{-3} in) 10.3 28.0 23.2 21.8 17.6 23.3 40.9 14.7 18.3 27.0 40.1 45.1 in) $(x \ 10^{-3}]$ 55.6 66.5 39.2 30.6 37.9 14.5 24.4 37.2 31.1 24.8 33.1 52.8 SR 172, MP in) $(x 10^{-3})$ 95.6 43.0 35.3 49.6 72.3 87.6 54.9 55.5 20.0 53.0 37.6 Table E25. 37.6 46.7 Load (psi) 8.09 8.09 55.0 54.9 55.5 52.6 53.6 53.1 55.2 52.1 Station 350 50 250 300 400 450 500 100 150 200 ı× v

268

Table E25. Continued.

6_7 (x 10 ⁻³ in)	3.4	3.0	3.4	4.0	3.3	3.5	4.3	4.0	3.3	4.3	4.4	3.7	0.5
δ _ε (x 10 ⁻³ in)	3.9	4.3	4.1	5.1	4.5	5.0	7.9	4.1		5.1	6.1	5.0	1.2
$\begin{pmatrix} \delta_{t} & \delta_{5} \\ (x \ 10^{-3} \ in) & (x \ 10^{-3} \ in) \end{pmatrix}$	6.4	7.8	9.1	8.2	7.7	9.3	18.2	11.7	14.6	10.3	9.3	10.2	3.4
	11.2	15.1	21.3	17.0	14.5	18.9	35.6	29.6	37.9	22.1	19.1	22.0	8.7
6_3 (x 10^{-3} in)	19.4	24.1	24.7	30.3	23.9	32.0	49.9	49.8	51.9	37.3	29.4	34.8	11.3
6_2 (x 10 ⁻³ in)	28.9	31.6	50.2	41.8	33.4	44.6	59.4	82.2	83.9	46.4	38.7	49.2	18.9
$(x 10^{-3} in)$	47.7	46.7	71.2	65.4	49.8	63.5	96.0	140.0	108.6	73.0	55.1	74.3	29.3
Load (psi)	82.8	81.5	74.6	74.4	76.2	75.4	72.5	70.4	70.4	72.1	73.3	74.9	4.1
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E25. Continued.

6 ₇ (x 10 ⁻³ in)	4.7	4.0	4.7	5.7	4.8	4.8	5.8	4.9	3.4	5.0	5.7	4.9	0.7
δ ₆ (x 10 ⁻³ in)	5.8	5.7	5.9	7.3	6.5	6.9	10.9	5.2	3.9	6.3	7.4	6.5	1.8
δ _s (x 10 ⁻³ in)	8.5	11.0	12.6	11.9	11.1	13.0	25.7	15.4	18.1	13.4	13.0	14.0	4.6
δ _μ (x 10 ⁻³ in)	15.2	2.09	29.0	24.1	20.7	26.6	49.7	39.2	48.5	30.2	24.0	29.8	11.3
6 ₃ (x 10 ⁻³ in)	24.4	31.6	48.9	39.1	33.0	43.3	71.3	55.2	64.8	48.8	35.7	45.1	14.4
6_2 (x 10 ⁻³ in)	39.4	40.1	70.5	59.9	42.6	54.1		86.3	88.5	64.1	43.9	58.9	18.4
δ ₁ (x 10 ⁻³ in)	63.0	63.1	96.1	88.8	68.2	86.9	107.4	98.3	108.3	99.7	70.4	86.4	17.3
Load (psi)	113.0	106.7	102.8	104.7	104.8	104.8	102.4	98.86	0.66	102.4	103.7	103.9	3.8
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E25. Continued.

													
6, (x 10 ⁻³ in)	6.1	5.0	6.2	7.5	6.2	6.1	7.0	5.8	3.3	5.7	6.7	0.9	1.1
δ_6 (x 10 ⁻³ in)	7.5	7.2	7.6	9.4	8.4	8.7	14.1	6.1	4.1	7.1	8.6	8.1	2.5
6 ₅ (x 10 ⁻³ in)	10.8	13.9	15.6	15.5	14.3	16.5	32.9	18.4	21.0	16.0	14.8	17.2	5.8
δ_{4} (x 10^{-3} in)	18.6	26.4	35.5	30.8	26.4	33.7	62.6	46.9	57.4	37.3	27.6	36.6	13.7
$(x 10^{-3} in)$	29.4	37.8	88.0	47.4	38.7	50.6	94.3	80.3	78.1	9.09	40.6	58.7	22.8
$(x 10^{-3} in)$	41.3	49.2	93.5	72.2	63.7	67.9	97.8	90.7	88.4	95.2	54.9	74.0	20.2
6_1 (x 10^{-3} in)	6.97	78.9	122.1	123.9	84.7	139.9	129.4	94.4	115.7	108.9	81.6	105.1	22.7
Load (psi)	138.3	134.4	135.0	135.0	136.1	134.5	130.0	125.8	124.1	131.5	134.8	132.7	4.4
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

10-3 3.0 3.0 2.9 2.9 3.0 2.8 0.4 2.6 2.8 2.9 2.3 3.7 × in) (x 10⁻³) 4.8 9.0 3.8 4.3 4.8 3.9 4.4 4.8 4.0 50°F. - FWD Data, 03/21/84, Surface Temperature = in) (x 10⁻³ 5.6 7.8 10.2 8.6 9.2 7.8 1.9 4.8 5.6 8.3 6.3 9.7 9.7 $(x 10^{-3} in)$ 16.9 12.3 10.2 15.2 20.4 18.6 20.4 16.9 15.6 15.1 4.0 10.4 $(x 10^{-3} in)$ 6.2 16.9 20.7 16.6 24.6 31.9 30.9 32.6 25.9 24.0 26.7 16.1 $(x 10^{-3} in)$ 2.0 42.5 28.6 7.8 34.5 27.8 33.0 41.6 33.1 23.8 20.7 23.1 SR 172, MP $(x 10^{-3} in)$ 45.0 34.9 48.6 59.0 59.4 45.2 10.7 38.6 28.8 47.8 59.1 35.1 Table E26. 56.9 59.4 57.2 55.9 55.0 55.5 57.3 1.8 Load (psi) 56.5 57.1 58.9 60.4 54.7 Station 300 350 400 450 500 50 250 100 150 200 ı× S

Table E26. Continued.

67 (x 10^{-3} in)	3.6	2.8	3.8	4.1	3.3	3.9	4.0	3.8	3.7	3.9	4.6	3.8	0.4
δ _ε (x 10 ⁻³ in)	4.4	4.2	5.2	5.5	4.6	5.9	9.9	5.0	5.5	6.2	6.9	5.4	6.0
δ_5 (x 10^{-3} in)	6.7	7.9	11.7	9.1	8.1	11.1	14.5	11.9	13.5	12.5	12.2	10.8	2.5
$\delta_{t_{t}}$ (x 10^{-3} in)	12.7	14.6	24.3	17.6	14.6	21.7	29.6	26.4	29.5	23.6	20.0	21.3	0.9
6_3 (x 10^{-3} in)	22.5	22.6	38.5	29.5	23.4	36.6	46.3	44.4	47.5	36.8	28.2	34.2	9.5
6_2 (x 10 ⁻³ in)	30.9	28.1	48.5	38.0	31.9	45.6	61.8	56.6	61.4	46.5	35.0	44.0	12.2
6_1 (x 10^{-3} in)	51.5	40.5	70.0	57.6	48.7	8.69	85.2	85.0	86.8	65.0	46.3	64.2	16.7
Load (psi)	82.0	81.8	9.9/	75.2	80.2	76.9	76.2	75.6	75.6	76.4	77.6	77.6	2.5
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E26. Continued.

d)	Load (psi)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$6_3 (x 10^{-3} in)$	δ_{t} (x 10^{-3} in)	6_5 (x 10^{-3} in)	δ ₆ (x 10 ⁻³ in)	67 (x 10^{-3} in)
11 11	112.4	68.3	52.5	29.3	17.6	9.5	6.4	5.1
50 11	111.8	58.5	39.9	33.3	21.0	11.3	5.9	3.7
100 10	104.1	6.96	9.69	65.4	35.0	16.3	7.1	5.2
150 10	108.0	81.0	54.7	39.8	25.2	13.2	8.0	6.2
200 11	110.0	68.5	44.6	33.2	21.1	11.7	6.7	5.0
250 10	104.0	99.5		60.1	31.0	15.9	8.0	5.2
300 10	103.7	105.4	81.5	54.0	43.2	20.8	0.6	5.0
350 10	103.7	101.2	81.5	58.4	37.8	16.1	6.2	4.6
400 10	103.1	107.2	92.5	80.2	41.7	18.5	6.7	4.3
450 10	108.5	91.5	88.0	52.0	32.4	16.6	7.8	4.9
500 10	108.2	60.2	44.1	36.5	25.2	14.7	8.6	5.9
× 10	107.0	85.3	64.9	49.3	30.1	15.0	7.3	5.0
S	3.5	18.6	20.0	16.2	8.7	3.3	1.0	0.7

in) $(x 10^{-3})$ 2.4 2.6 1.9 2.5 2.1 2.3 2.0 2.0 2.6 2.2 0.3 in) δ₆ (x 10⁻³ : SR 172, MP 21.4 - FWD Data, 08/17/83, Surface Temperature =75°F. 2.6 3.0 in) $(x 10^{-3};$ 4.6 4.8 5.1 3.2 3.8 4.0 0.5 4.2 4.3 in) 1 (x 10⁻³ · 7.6 7.0 7.1 7.7 in) (x 10⁻³, 11.3 11.0 10.0 11.9 11.7 11.1 7.3 13.5 13.3 1.6 in) $6_2 \times 10^{-3}$ 17.5 16.7 17.1 16.1 16.5 14.6 13.3 10.1 17.8 20.8 20.7 16.5 in) 6_1 (x 10^{-3} 24.8 24.7 26.3 24.4 19.6 24.1 19.4 15.0 26.3 33.2 24.5 5.2 Table E27. Load (psi) 91.4 93.7 93.8 93.7 90.1 85.4 86.6 76.3 89.1 87.0 88.0 5.5 Station 50 100 150 200 250 300 350 400 450 500 ıx v

Table E27. Continued.

Station		δ ₁	δ ₂	δ3	Ψ9	۵,	8	87
	(psi)	(x 10 ⁻³ in)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	(x 10 ⁻³ in)	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
-	124.5	32.6	22.6	15.6	10.0	6.3	4.3	3.3
20	126.8	30.8	22.0	15.0	11.3	6.1	3.9	3.8
100	128.9	33.4	21.9	14.6	0.6	5.8	4.2	3.1
150	132.6	32.9	22.3	15.4	10.0	6.3	4.3	2.6
200	110.9	32.2	22.3	15.7	8.6	5.6	3.8	2.8
250	126.0	25.8	19.0	14.3	10.2	6.7	4.5	3.1
300	119.2	25.6	17.6	13.3	9.6	6.5	4.4	3.1
350	119.9	19.5	13.1	9.4	6.5	4.3	2.9	2.2
400	106.3	35.7	24.4	16.5	10.1	5.5	3.6	2.8
450	121.2	40.5	27.1	17.9	10.3	5.2	3.5	3.0
200	120.2	44.9	28.8	18.5	10.6	6.1	4.3	3.6
ı×	121.5	32.2	21.9	15.1	8.5	5.8	4.0	3.0
S	7.7	7.0	4.3	2.4	2.2	0.7	0.5	0.4

in) (x 10⁻³ 1.6 1.0 0.4 1.4 1.3 1.2 0.9 1.2 1.2 1.3 1.2 1.1 1.1 $(x 10^{-3} in)$ SR 172, MP 21.4 - FWD Data, 01/10/84, Surface Temperature = 34°F. 1.8 1.9 1.6 1.5 1.6 0.3 1.3 in) (x 10⁻³) 2.5 2.2 2.6 1.9 1.6 1.6 2.0 2.9 0.4 1.7 2.1 in) δ_μ (x 10⁻³ ; 2.6 2.2 2.4 $(x 10^{-3} in)$ 3.5 3.9 2.5 2.9 5.0 4.0 4.9 4.8 4.0 3.2 0.9 in) δ_2 10^{-3} 5.9 6.9 4.6 3.8 4.9 5.2 4.0 5.3 5.3 Ľ in) $(x 10^{-3})$ 12.8 10.4 10.5 12.4 6.8 5.5 5.2 5.9 8.0 7.7 Table E28. 9.3 80.8 78.0 Load (psi) 77.2 69.4 71.0 70.3 72.7 71.2 69.4 67.4 72.3 4.4 Station 100 200 250 300 50 150 350 400 450 500 ı× S

Table E28. Continued.

-															
	29	$(x 10^{-3} in)$	5.4	2.3	2.0	1.7	1.5	1.5	1.5	1.3	1.8	1.8	2.0	1.8	0.3
	ς _e	$(x 10^{-3} in)$	3.3	2.8	5.9	2.8	2.1	1.9	1.9	1.8	2.4	2.3	2.6	2.4	0.5
		$(x 10^{-3} in)$	4.4	3.6	4.0	4.0	2.8	2.4	2.2	2.3	3.3	3.0	3.3	3.2	0.7
	ζη9	$(x 10^{-3} in)$	5.4	4.4	5.4	5.3	4.0	3.1	2.7	3.0	4.3	3.7	3.8	4.1	1.0
	δ3	(x 10 ⁻³ in)	7.3	6.1	7.6	7.6	5.3	4.1	3.3	4.0	5.8	4.8	4.9	5.5	1.5
	62	(x 10 ⁻³ in)	10.0	8.8	10.4	11.1	6.9	5.3	4.5	5.6	7.6	8.9	7.2	7.7	2.2
	δ1	(x 10 ⁻³ in)	17.2	14.8	15.8	18.7	10.2	7.9	7.1	8.3	11.0	10.4	12.4	12.2	3.9
	Load		110.4	114.7	102.5	113.8	97.5	100.4	102.0	100.2	96.5	100.4	96.7	102.3	8.0
	Station		-	50	100	150	200	250	300	350	400	450	200	ı×	s

Table E28. Continued.

Station	Load (psi)	δ ₁ (x 10 ⁻³ in)	62 (x 10^{-3} in)	δ ₃ (x 10 ⁻³ in)	δ ₄ (x 10 ⁻³ in)	δ ₅ (x 10 ⁻³ in)	δ ₆ (× 10 ⁻³ in)	δ ₇ (x 10 ⁻³ in)
_	146.7	23.6	14.3	10.7	7.8	6.4	4.8	3.6
20	157.1	21.2	12.6	8.8	6.4	5.5	4.0	3.2
100	139.7	22.7	15.1	11.1	8.0	0.9	4.3	3.0
150	154.5	26.6	16.2	11.5	8.0	0.9	4.2	2.6
200	131.4	15.2		7.9	0.9	4.3	3.1	2.3
250	137.6	11.5	7.7	0.9	4.7	3.6	2.9	2.3
300	141.4	10.2	6.5	5.1	3.9	3.2	2.7	2.3
350	137.9	12.1	8.0	6.1	4.6	3.5	2.6	1.9
400	131.3	16.0	11.1	8.5	6.4	5.0	3.5	2.7
450	139.4	14.8	10.0	7.1	5.5	4.5	3.4	2.7
200	132.1	17.4	10.5	7.3	5.6	5.0	4.0	3.0
ı×	140.8	17.4	11.2	8.2	6.1	4.8	3.6	2.7
S	8.7	5.4	3.3	2.2	1.4	1.1	0.7	0.5

Table £23. Continued.

δ ₁	δ ₂	63 7-3-4	4° 6° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	δ ₅	δ ₆	δ ₇
	(ur or x)	(ur 01 x)	(ut 01 x)	(ut _ 01 x)	(ni 01 x)	(ni 01 x)
	18.1	12.8	10.2	8.0	6.4	4.5
	10.1	11.4	8.1	6.4	5.1	4.0
	19.1	14.0	10.3	7.6	5.5	3.8
	21.2	14.8	10.4	7.6	5.3	3.3
	13.2	10.3	7.7	5.6	4.0	3.0
	6.6	7.8	0.9	4.7	3.7	3.0
	8.2	6.4	5.0	4.2	3.4	2.9
	10.3	7.8	5.9	4.4	3.3	2.5
	14.2	11.1	8.3	6.3	4.5	3.5
	13.2	9.4	7.2	5.8	4.4	3.5
	13.3	9.5	7.2	6.3	5.1	3.9
	14.3	10.5	7.9	6.1	4.6	3.4
	4.0	2.7	1.9	1.3	1.0	9.0

(x 10⁻³ 1.9 2.0 1.6 1.7 1.0 2.0 9.0 $\delta_{\rm e}$ (x 10^{-3} in) FWD Data, 03/01/84, Surface Temperature = 38°F. 2.6 2.8 3.9 2.8 3.0 3.1 2.0 9.0 in) $(\times 10^{-3})$ 5.0 4.3 5.9 4.3 5.4 3.6 2.4 4.4 1.5 5.7 5.7 in) 10.9 10.2 10.6 $(\times 10^{-3})$ 12.0 7.0 13.4 13.1 4.6 9.6 2.8 $(x 10^{-3} in)$ 18.8 17.5 19.3 17.4 19.4 10.5 13.3 8.9 21.4 30.3 0.9 11.7 17.1 21.4 in) $(x 10^{-3})$ 27.0 24.4 27.5 26.7 13.2 18.9 9.4 26.1 17.1 46.1 24.3 28.7 ₩ SR 172, in) 6_1 (x 10^{-3} 35.9 37.6 17.8 0.69 22.7 15.7 39.1 34.5 36.0 14.5 Table E29. Load (psi) 67.0 68.4 64.6 58.5 58.6 63.1 63.7 64.7 63.7 67.2 63.8 3.2 Station 100 150 200 250 300 350 50 400 450 500 ı× o

Table E29. Continued.

6_7 (x 10^{-3} in)	4.2	3.8	2.8		3.0	2.6	2.4	1.9	2.4		1.7	2.8	0.8
δ ₆ (x 10 ⁻³ in)	5.3	3.9	4.1	3.9	3.7	3.5	3.8	2.8	2.8	2.2	2.3	3.5	0.9
δ_s (x 10^{-3} in)	7.9	6.1	6.4	5.9	7.5	5.6	9.9	4.8	7.4	2.6	3.2	5.8	1.7
δ ₄ (× 10 ⁻³ in)	14.5	12.9	13.1	12.5	14.8	8.9	11.0	8.0	16.5	17.4	6.5	12.4	3.5
6_3 (x 10 ⁻³ in)	24.3	22.0	23.6	21.3	23.3	12.9	16.0	11.7	25.9	34.1	15.9	21.0	6.5
62 (x 10 ⁻³ in)	24.9	30.1	33.8	32.1	31.3	16.3	20.4	14.8	24.5	52.4	24.6	29.6	10.5
6_1 (x 10 ⁻³ in)	52.0	44.2	49.3	45.7	44.9	22.2	28.1	20.9	47.2	75.3	44.9	43.2	15.3
Load (psi)	83.8	90.9	85.3	91.7	84.8	91.1	88.0	88.6	79.5	81.1	90.9	86.9	4.3
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E29. Continued.

										1			
6, (x 10 ⁻³ in)	5.7	5.0	3.7	1.4	3.6	3.5	3.1	2.8	3.2		1.9	3.4	1.3
δ_6 (x 10^{-3} in)	7.2	5.2	5.2	4.7	4.8	5.0	4.9	3.8	3.9	2.8	2.7	4.6	1.2
δ_s (x 10^{-3} in)	10.9	7.8	8.4	8.0	10.0	7.8	9.8	6.7	9.7	3.7	4.4	7.8	2.2
64 (x 10^{-3} in)	19.7	16.7	17.3	16.7	19.9	12.3	14.4	10.9	21.8	23.1	10.3	16.6	4.3
6_3 (x 10 ⁻³ in)	32.6	28.5	30.0		31.6	17.5	21.3	15.8	34.9	62.0	21.8	29.6	13.2
$(x \ 10^{-3} \ in)$	48.8	40.1	50.0	50.3	42.5	22.0	27.4	20.2	46.3	9.69	34.4	41.0	14.5
$(x 10^{-3} in)$	68.3	57.2	63.0	59.7	59.4	30.1	37.7	29.8	62.8	94.8	60.2	9.99	18.7
Load (psi)	114.4	123.4	115.0	125.5	113.8	122.1	119.3	120.6	109.3	110.8	124.7	118.1	5.7
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E29. Continued.

6_7 (x 10 ⁻³ in)	9.9	6.3	4.3	2.8	4.5	4.4	3.8	3.7	3.9		2.5	4.3	1.3
8 ₆ (x 10 ⁻³ in)	8.7	6.5	6.1	5.6	0.9	6.3	5.8	5.0	4.9	3.4	3.7	5.6	1.4
$6_5 (x 10^{-3} in)$	13.2	9.5	10.4	10.3	12.1	9.7	10.2	8.5	11.9	4.8	5.5	9.6	2.6
δ ₄ (x 10 ⁻³ in)	24.1	20.5	21.1	20.7	24.3	15.3	17.3	13.8	26.8	28.1	13.2	20.5	5.1
δ ₃ (x 10 ⁻³ in)	39.5	32.7	45.3	38.6	38.7	21.7	25.6	19.9	43.0	69.1	56.6	36.4	13.9
62 (x 10 ⁻³ in)	54.5	49.1	59.1	49.4	52.5	27.3	33.2	25.7	57.4	80.1	47.3	48.7	15.6
6_1 (x 10 ⁻³ in)	83.7	69.1	75.7	71.9	71.7	37.2	46.0	36.0	77.5	102.0	72.8	67.6	20.2
Load (psi)	147.1	150.4	147.7	153.2	46.5 1	148.0	146.5	149.6	143.6	142.5	150.0	147.7	3.0
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	s

2.8 2.5 1.5 1.9 1.9 1.9 in) δ₆ (× 10⁻³ · SR 172, MP 21.4 - FWD Data, 03/07/84, Surface Temperature = 40°F. 3.0 2.0 $(x 10^{-3})$ 4.9 4.8 4.5 4.3 4.3 3.8 3.2 4.4 3.0 2.8 0.8 in) $(\times 10^{-3})$ 9.5 8.5 in) 13.5 12.6 12.6 9.0 12.4 10.2 7.9 $(\times 10^{-3})$ 15.7 16.8 15.0 12.8 2.8 in) 18.8 16.9 11.6 13.2 6_2 (x 10^{-3} 17.7 10.4 21.1 25.1 25.2 18.1 in) δ_1 25.6 23.7 15.6 18.3 14.6 29.7 Table E30. က 67.3 58.4 62.4 59.7 60.2 65.2 65.2 58.5 9.99 64.0 62.6 Load (psi) Station 100 150 200 250 300 350 400 450 500 ıx v

Table E30. Continued.

										_			
δ ₇ (x 10 ⁻³ in)	3.6	3.4	3.0	2.2	2.5	2.6	2.5	1.9	2.3	2.3	3.0	2.7	0.5
8 ₆ (x 10 ⁻³ in)	4.5	3.9	4.1	4.0	3.3	3.5	3.8	2.5	3.0	3.0	3.2	3.5	9.0
65 (x 10^{-3} in)	7.1	5.9	5.7	6.1	5.8	5.3	5.9	4.2	0.9	3.8	3.9	5.4	1.0
δ_{t_i} (x 10 ⁻³ in)	12.3	11.2	10.2	10.4	10.6	8.4	9.3	7.0	12.8	11.3	10.1	10.3	1.7
63 (x 10^{-3} in)	19.7	18.2	16.9	16.8	17.0	12.4	13.7	10.3	21.3	22.6	20.2	17.1	3.8
6_2 (x 10 ⁻³ in)	28.1	25.6	23.4	23.2	22.8	15.7	17.7	13.1	28.6	34.4	33.9	24.2	6.9
$\begin{cases} \delta_1 \\ (x \ 10^{-3} \ in) \end{cases}$	42.2	37.4	36.3	33.6	31.7	22.1	25.2	19.3	41.3	50.	54.2	35.8	11.0
Load (psi)	81.4	88.6	91.1	93.7	80.9	84.8	91.5	88.0	78.9	88.3	87.5	86.8	4.8
Station	-	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E30. Continued.

δ_7 (x 10 ⁻³ in)	5.0	4.8	3.8	2.8	3.4	3.6	3.4	2.6	3.7	2.8	3.9	3.6	0.8
δ _ε (× 10 ⁻³ in)	6.3	5.2	5.2	5.0	4.5	5.0	5.0	3.6	4.0	4.0	4.6	4.8	0.7
65 (x 10 ⁻³ in)	9.5	8.2	7.6	8.5	7.9	7.4	7.9	5.8	8.2	5.0	4.9	7.4	.5
$\delta_{t_{\rm h}}$ (x 10^{-3} in)	16.9	14.8	13.5	14.6	14.5	11.5	12.4	9.5	17.7	15.7	14.2	14.1	2.4
δ_3 (x 10 ⁻³ in)	24.9	22.7	22.8	23.0	23.4	16.8	18.2	13.9	29.4	30.8		22.6	5.2
6_2 (x 10 ⁻³ in)	40.7	35.6	31.4	33.0	31.3	21.3	23.8	18.2	39.6	46.0	45.9	33.3	9.4
$(x 10^{-3} in)$	56.3	49.4	48.4	45.9	43.1	29.6	34.1	26.3	56.1	75.6	71.4	48.7	15.7
Load (psi)	111.6	121.1	124.7	124.5	109.0	114.2	124.0	118.3	111.4	117.3	117.6	117.6	5.6
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E30. Continued.

δ ₇ (x 10 ⁻³ in)	6.1	6.1	4.8	3.5	4.2	4.6	4.1	3.5	4.4	3.3	4.9	4.5	1.0
$\delta_{\rm e}$ (x 10^{-3} in)	8.0	9.9	6.7	6.1	5.6	6.2	5.9	4.5	4.7	4.3	5.6	5.8	1.1
δ _s (x 10 ⁻³ in)	11.9	9.7	6.3	10.7	10.0	9.5	9.4	7.4	10.2	5.8	5.9	9.0	1.9
δ ₄ (x 10 ⁻³ in)	21.4	17.8	17.2	18.8	18.6	14.0	14.9	12.0	22.2	19.2	17.8	17.6	3.0
δ ₃ (x 10 ⁻³ in)	33.6	26.6	25.3	29.4	28.4	20.6	21.9	17.4	35.2	40.9	33.0	28.4	7.0
62 (x 10 ⁻³ in)	52.4	52.7	38.6	41.2	42.4	26.0	28.9	22.7	49.4	54.0	54.3	42.0	11.8
$(x 10^{-3} in)$	68.8	60.1	59.4	55.9	53.9	36.2	41.1	32.5	69.1	80.3	85.0	58.4	17.0
Load (psi)	141.8	146.1	151.3	150.4	142.5	145.1	149.4	149.0	142.6	143.8	140.3	145.7	3.8
Station	_	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E31. SR 172, MP 21.4 - FWD Data, 03/20/84, Surface Temperature = 34°F.

-3 in)					~	٥.	_						
δ ₇ (x 10 ⁻³		2.6	3.2	1.9	1.8	2.2	2.1	1.3	1.7	2.1	2.1	2.2	9.0
δ ₆ (× 10 ⁻³ in)	3.7	3.0	3.4	3.1	2.5	2.9	3.1	1.8	2.9	2.2	2.2	2.8	9.0
δ_s (x 10^{-3} in)	5.2	4.4	4.6	4.9	4.4	4.7	4.8	2.8	3.9	2.8	2.4	4.1	1.0
δ ₄ (x 10 ⁻³ in)	9.2	8.2	0.6	8.2	7.6	7.4	7.3	4.8	8.7	7.4	8.1	7.6	H.
δ_3 (x 10 ⁻³ in)	15.7	14.1	14.7	13.8	11.7	10.5	10.2	7.4	13.7	14.5	17.3	13.0	2.8
6_2 (x 10^{-3} in)	21.9	19.3	18.1	19.6	15.0	12.9	12.5	9.3	14.8	20.8	25.6	17.2	4.8
δ_1 (x 10 ⁻³ in)	31.5	29.1	30.9	28.5	20.0	17.0	16.9	13.0	24.9	44.0	42.4	27.1	10.1
Load (psi)	61.2	64.9	62.7	64.0	61.5	68.9	64.4	60.1	63.9	57,0	60.2	62.6	3.1
Station	-	20	100	150	200	250	300	350	400	450	200	ı×	s

Tablt E31. Continued.

δ, δ, δ, δ, δ, δ, δ, δ, δ, δ, δ, δ, δ, δ		δ.		ô.	ô	6,
$\frac{3}{10}$ in) $(x \cdot 10^{-3})$ in) $(x \cdot 10^{-3})$ in) $(x \cdot 10^{-3})$	$(x 10^{-3} in)$	×	0^{-3} in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	$(x 10^{-3} in)$
20.5		17	11.9	6.9	5.0	4.0
38.3 25.2 18.5 1		Ä	10.7	5.6	3.8	3.6
40.7 26.5 19.6 1		-	11.2	5.8	3.9	3.3
40.0 26.7 19.2 1			11.5	6.7	4.0	2.4
29.1 20.6 16.4	16.4		10.6	6.1	3.5	2.5
22.8 17.2 13.7	13.7		9.7	6.1	3.9	2.8
23.0 16.8 13.5	13.5		9.7	6.3	4.0	2.7
17.3 12.2 9.8	8.6		9.9	4.1	2.6	1.8
32.0 22.4 17.6	17.6		11.3	5.9	3.3	2.5
40.7 26.9 19.5	19.5		10.5	4.3	2.7	
52.0 30.7 22.9	22.9		11.8	4.4	3.5	3.4
34.3 23.0 17.4	17.4		10.5	5.6	3.6	2.9
10.4 5.7 3.8	3.8		1.5	1.0	0.7	0.7

Table E31. Continued.

													
6 ₇ (x 10 ⁻³ in)	5.4	4.9	3.9	3.2	3.5	4.1	3.7	2.6	3.6	3.6	4.6	3.9	8.0
\$6 (x 10 ⁻³ in)	6.5	5.0	5.1	5.1	4.8	5.5	5.3	3.6	4.5	4.4	5.1	5.0	0.7
δ_s (x 10^{-3} in)	9.2	7.0	7.8	8.9	9.8	8.5	8.5	5.7	8.3	5.8	7.0	7.8	1.2
δ_{μ} (x 10^{-3} in)	16.5	14.1	14.9	16.0	14.8	13.2	12.9	9.1	15.7	14.8	16.4	14.7	2.6
δ_3 (x 10^{-3} in)	26.6	24.4	25.9	25.7	23.0	18.0	17.9	13.4	24.1	26.5	30.6	23.3	4.9
$\begin{cases} \delta_2 \\ (x \ 10^{-3} \ in) \end{cases}$	49.5	33.0	33.5	35.6	26.9	22.8	23.4	16.9	28.5	34.9	40.0	31.4	9.0
$6_1 $ (x 10^{-3} in)	55.7	51.0	54.8	54.6	40.4	30.9	30.6	23.7	44.7	55.6	70.1	46.4	13.9
Load (psi)	118.4	122.9	121.6	123.5	117.9	130.5	125.0	123.7	114.2	109.6	117.2	120.4	5.7
Station	F	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E32. SR 174, FWD Data, 08/09/83, Surface Temperature = 76°F.

Table E32. Continued.

i.	Ì							T				·	
δ ₇ (x 10 ⁻³		1.7	2.1	2.2	1.5	1.2	,	1.7	1.6	1.9	1.7	1.6	0.4
δ ₆ (x 10 ⁻³ in)	1.7	2.8	3.1	3.8	2.0	2.1	2.2	2.4	2.2	2.7	2.3	2.5	9.0
δ_s (x 10 ⁻³ in)	3.1	4.9	4.8	6.2	2.9	4.1	4.3	3.5	3.3	3.9	3.3	4.0	1.0
δ_{t_t} (x 10 ⁻³ in)	5.6	8.7	7.6	9.4	4.7	7.1	8.0	5.3	5.0	6.1	5.1	9.9	1.6
δ_3 (x 10^{-3} in)	8.6	13.1	11.1	13.8	7.9	10.5	12.1	7.6	7.8	9.6	7.9	10.0	2.3
$6_2 \times 10^{-3} \text{ in})$	12.4	19.1	15.2	18.0	11.9	14.8	16.9	11.5	11.7	13.8	11.5	14.2	2.8
$6_1 (x 10^{-3} in)$	17.7	28.1	22.8	25.6	19.9	22.2	24.2	18.9	17.4	19.0	11.5	21.2	3.6
Load (psi)	76.31	78.34	79.21	73.13	73.71	75.45	75.74	85.00	75.88	86.45	85.58	78.62	4.86
Station	-	20	100	150	200	250	300	350	400	450	200	ı×	S

Table E32. Continued.

Station	Load (psi)	δ ₁	62 (2, 10-3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	63	δ, 2, 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	δ ₅	δ ₆	δ ₇
		(111 01 4)	(111)	01 X)			(ur olx)	(ur 01 x)
_	122.36	24.5	17.3	12.2	8.1	4.7	2.7	1.5
20	126.71	41.9	30.8	20.6	14.1	8.1	4.4	2.6
100	128.45	36.5	25.5	19.7	14.3	6.3	0.9	3.9
150	118.31	41.2	30.2	23.9	17.6	12.0	7.4	4.1
200	114.40	31.5	20.8	13.8	0.6	5.7	3.8	2.7
250	131.06	35.3	24.3	17.4	11.8	8.9	3.3	1.6
300	122.51	35.5	27.4	17.5	13.4	6.9	3.5	1.7
350	133.80	28.5	18.8	13.3	10.4	6.2	4.2	2.9
400	118.74	25.1	18.1	12.2	8.7	5.7	4.1	3.0
450	126.56	27.0	20.0	13.7	6.6	9.9	4.5	3.3
200	125.84	24.6	17.0	12.4	8.3	5.4	3.7	2.6
ı×	123.52	32.0	22.7	16.1	11.4	7.0	4.3	2.7
S	5.44	6.5	5.1	4.0	3.1	2.1	1.3	0.9

Table E32. Continued.

	\Box			 						********			
6, (x 10 ⁻³ in)	1.6	3.0	4.8	5.0	3.3	2.8	1.9	3.7	3.7	3.9	3.2	3.3	1.1
δ ₆ (x 10 ⁻³ in)	3.0	5.2	7.3	9.1	4.7	4.1	3.9	5.2	5.0	5.5	4.5	5.2	1.7
δ_s (x 10 ⁻³ in)	5.2	9.6	11.3	14.5	7.0	8.1	7.9	7.6	7.1	7.9	6.7	8.4	2.6
δ_{μ} δ_{5} $(x 10^{-3} \text{ in})$ $(x 10^{-3} \text{ in})$	8.9	16.7	17.0	21.1	10.9	14.1	14.5	11.0	10.4	11.8	10.0	13.3	3.7
6 ₃ (x 10 ⁻³ in)	13.3	23.0	23.0	28.1	15.0	20.3	20.4	15.3	14.9	16.3	14.5	18.6	4.7
6_2 (x 10 ⁻³ in)	18.8	35.3	39.6	35.4	23.3	27.0	30.3	21.3	20.6	22.9	19.6	25.8	6.1
δ_1 (x 10 ⁻³ in)	26.5	47.5	41.8	47.4	36.1	39.8	39.4	31.9	28.9	30.8	27.8	36.2	7.6
Load (psi)	138.58	143.51	147.85	133.80	135.11	137.86	137.57	151.62	136.27	144.81	143.80	140.98	5.70
Station	,	20	100	150	200	250	300	350	400	450	200	ı×	S

in) $(x 10^{-3})$ 6.0 1.0 0.2 0.9 9.0 1.0 0.9 0.7 1.0 1.0 1.4 in) $(\times 10^{-3})$ 0.3 1.2 0.8 1.5 1.8 1.0 1.3 FWD Data, 01/10/84, Surface Temperature = 34°F. in) $(\times 10^{-3})$ 1.6 0.4 1.5 1.4 1.2 1.6 0.9 2.0 2.3 2.2 1.5 1.5 1.4 in) 10-3 1.5 2.0 9.0 1.9 1.6 2.6 3.0 2.8 × in) 10-3 9.0 2.4 2.0 2.9 2.6 4.0 3.6 × in) δ₂ 10⁻³ 3.0 6.0 3.8 4.2 5.4 5.5 4.6 3.8 3.8 SR 174, × in) . 10-3 7.0 6.4 6.3 4.9 9.9 1.3 6.9 5.2 7.8 6.5 Table E33. 8.3 × 78.5 9.6/ 83.8 80.8 6.9/ $8\tilde{3}.2$ 75.6 75.6 85.7 81.7 5.1 88.0 Load (psi) Station 100 150 200 250 300 350 400 450 500 50 $i \times o$

Table E33. Continued.

													
67 (x 10^{-3} in)	0.7	1.4	2.0	2.0	1.4	1.2	1.0	1.6	1.4		1.3	1.4	0.4
δ_6 (x 10^{-3} in)	1.0	2.0	2.7	2.7	1.8	1.6	1.4	1.9	1.8	1.7	1.6	1.8	0.5
$6_5 (x 10^{-3} in)$	1.2	2.6	3.4	3.4	2.2	2.2	2.0	2.4	2.2	2.1	1.9	2.3	9.0
$\delta_{t_{t}}$ (x 10^{-3} in)	1.8	3.5	4.3	4.3	2.8	2.7	2.8	2.9	2.8	2.5	2.3	3.0	0.8
6_3 (x 10 ⁻³ in)	3.2	5.0	5.9	5.4	3.8	3.8	4.0	3.8	3.8	3.5	3.1	4.1	0.9
62 (x 10 ⁻³ in)	5.2	7.3	7.4	6.7	5.3	4.7	4.5	5.3	5.4	4.8	4.3	5.5	1.1
δ ₁ (x 10 ⁻³ in)	10.2	11.0	10.6	9.6	9.6	7.1	6.2	9.6	8.9	8.6	7.2	9.0	1.6
Load (psi)	116.4	119.2	110.0	107.5	114.0	105.4	106.7	123.5	112.2	118.2	112.3	113.2	5.7
Station	L	20	100	150	200	250	300	350	400	450	200	ı×	s

Table E33. Continued.

δ ₇ (x 10 ⁻³ in)	1.0	2.0	3.0	3.0	2.1	1.5	1.3	2.3	2.2	2.2	2.0	2.1	9.0
δ ₆ (x 10 ⁻³ in)	1.5	2.9	4.1	4.0	2.7	2.3		3.0	2.8	2.6	2.4	2.8	0.8
δ ₅ (x 10 ⁻³ in)	2.0	3.8	5.0	5.1	3.4	3.2	2.8	3.6	3.3	3.2	3.0	3.5	0.9
δ _μ (x 10 ⁻³ in)	2.4	5.3	6.4	6.4	4.1	4.2	3.8	4.3	4.1	3.8	3.6	4.4	1.2
6_3 (x 10^{-3} in)	4.4	7.4	8.4	8.0	5.4	5.5		5.5	5.6	5.1	4.7	0.9	1.4
6_2 (x 10 ⁻³ in)	7.0	10.4	10.6	9.7	7.6	7.3	6.4	7.6	7.7	7.0	6.2	7.0	1.6
6_1 (x 10^{-3} in)	14.0	15.7	15.4	13.7	13.7	11.3	9.3	14.1	12.7	12.4	10.4	13.0	2.0
Load (psi)	159.9	159.7	151.3	148.4	149.2	145.9	145.2	171.1	153.8	162.4	157.2	154.9	8.0
Station	_	20	100	150	2.00	250	300	350	400	450	200	ı×	s

Table E33. Continued.

Station	Load (psi)	δ ₁	δ ₂	δ ₃	δ ₄	6 ₅	δ ₆	67,
		(ut otx)	(nr 01 x)	(x 10 ~ in)	(x 10 ~ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)
_	196.4	17.0	8.4	5.1	2.8	2.3	1.6	1.1
50	198.3	19.8	13.0	9.4	8.9	5.1	3.7	2.7
100	190.3	19.1	13.4	10.6	8.2	6.4	5.0	3.8
150	183.2	17.4	12.5	10.2	8.3	9.9	5.2	3.9
200	183.5	17.0	9.4	7.0	5.4	4.4	3.5	2.8
250	178.0	14.6	9.5	7.1	5.6	4.1	3.4	2.0
300	179.8	12.1	8.0	9.9	4.9	3.5	2.7	1.6
350	208.1	17.3	9.5	7.1	5.6	4.6	3.9	2.8
400	198.0	15.4	8.8	6.5	5.0	4.1	3.4	2.7
450	194.6	13.2	8.0	0.9	4.7	3.8	3.2	2.6
200	192.2	15.9	8.6	7.2	5.4	4.4	3.6	2.8
ı×	191.1	16.3	10.0	7.5	5.7	4.5	3.6	2.6
S	9.5	2.3	2.0	1.8	1.6	1.2	1.0	0.8
			T					

1.9 1.9 0.5 0.9 6. 5.6 2.6 in) SR 174, FWD Data, 03/01/84, Surface Temperature = 38°F. $\int_{-\infty}^{\delta_5} (x \cdot 10^{-3})$ 3.9 2.0 9.9 5.4 3.8 5.0 in) δ₄ (x 10⁻³ -12.6 5.9 6.4 9.9 5.3 11.3 6.5 $(x 10^{-3} in)$ 9.9 10.6 10.2 15.9 8.2 37.0 20.8 10.2 11.3 20.9 16.9 16.3 10.7 14.9 26.0 13.8 20.0 16.3 14.3 30.0 48.4 62 (x 10⁻³ 15.4 14.1 in) $(x 10^{-3})$ 36.8 23.5 22.4 65.8 30.3 13.7 42.6 28.6 20.1 Table E34. Load (psi) 73.0 75.2 75.3 69.7 69.2 68.6 58.4 65.3 74.1 Station 200 250 300 350 400 450 500 150 100 ı× v

300

Table E34. Continued.

													
6 ₇ (x 10 ⁻³ in)	1.5	1.4	1.4	3.7	2.4		-	2.6	2.5	2.5	2.4	2.4	0.8
δ ₆ (x 10 ⁻³ in)			5.1	5.9	3.4	2.8	2.6	4.0	3.5	3.5	3.2	3.6	<u>-</u>
δ_s (x 10 ⁻³ in)	4.6	4.8	8.9	7.6	5.3	13.0	7.0	6.3	5.2	5.2	5.1	6.8	2.6
δ_{4} (x 10^{-3} in)	8.5	14.4	15.1	15.2	8.7	29.4	16.0	10.2	8.2	8.6	8.1	12.9	6.3
δ_3 (x 10 ⁻³ in)	13.7	25.9	21.9	21.5	13.4	43.5	26.0	15.6	13.3	13.9	13.2	20.2	9.3
δ_2 (x 10^{-3} in)	19.5	37.8	28.5	26.2	18.2	55.8	28.5	21.5	18.5	19.0	17.5	26.4	11.6
6_1 (x 10 ⁻³ in)	28.5	52.4	37.9	35.6	27.4	75.6	46.4	30.7	27.9	29.3	26.1	38.0	15.1
Load (psi)	97.4	88.9	98.5	89.9	93.5	81.8	91.2	100.6	101.8	94.9	101.2	95.0	6.4
Station	-	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E34. Continued.

δ ₇ (x 10 ⁻³ in)	1.6	1.3	4.9	5.5	3.5	1.3	1.3	3.7	3.6	3.7		3.0	1.6
δ ₆ (x 10 ⁻³ in)	2.8	2.0	7.2	9.8	4.8	3.6	3.3	5.8	5.0	5.0		4.8	2.0
65 (x 10^{-3} in)	5.5	6.3	12.3	13.7	7.6	16.9	9.1	8.9	7.5	9.7		9.5	3.6
δ_{μ} (x 10 ⁻³ in)	10.2	17.4	20.6	21.0	23.4	36.5	20.6	14.1	11.5	12.0		18.7	7.8
δ_3 (x 10 ⁻³ in)	17.1	32.6	31.5	29.3	18.7	57.7		20.7	18.7	18.8		27.2	13.0
62 (x 10^{-3} in)	27.6	50.2	38.1	36.1	25.3	69.1	25.1	28.5	24.9	25.6		25.0	14.5
$(\times 10^{-3} in)$	35.7	9.99	50.5	48.3	37.5	93.0	58.7	40.9	36.9	37.3		50.5	18.2
Load (psi)	128.3	114.4	133.5	120.6	125.6	108.0	124.7	136.0	137.0	136.8		126.5	6.6
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E34. Continued.

6,2	(x 10 ⁻³ in)	1.7	1.5	6.2	7.0	4.5	1.8	1.6	4.8	4.4	4.6		3.8	2.0
	(x 10 ⁻³ in)	3.0	3.3	9.3	10.9	6.3	4.1	3.9	7.3	6.4	6.5	90-90-90-90-90-90-90-90-90-90-90-90-90-9	6.1	2.6
6.5 -3	(x 10 ⁻² in)	0.9	6.5	15.5	17.2	9.8	19.7	11.1	11.2	6.6	9.5		11.6	4.5
δ ₄	(x 10 ~ in)	11.6	19.9	25.4	26.2		43.0	25.3	17.4	14.4	14.7		22.2	0.6
δ ₃	(ut _ 01 x)	19.3	40.9	36.1	35.8	23.4			25.4	22.2	21.9		29.1	8.2
δ ₂	(ur orx)	36.7	54.9	46.3	44.0	31.6	78.7	30.2	34.5	28.9	31.3		41.7	15.5
δ1 (~ 10 ⁻³ ± 5)	(4 10 111)	41.6	78.3	61.1	59.6	45.8	116.9	69.5	49.7	44.7	44.6		61.2	23.0
Load (psi)		156.7	142.3	159.6	150.2	156.1	132.2	152.5	169.6	165.5	164.8		155.0	11.3
Station		_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E35. SR 174, FWD Data, 03/07/84, Surface Temperature = 38°F.

	Load	δ_1	δ ₂			δs	δ ₆	6,
	(psi)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	(x 10 ⁻³ in)	3 in)	$(x 10^{-3} in)$	(x 10 ⁻³ in)	(x 10 ⁻³ in)
	9.89	19.8	13.5	10.0	6.2	3.4	1.8	1.1
20 (63.7	39.3	27.4	19.4	11.5	5.4	2.5	2.0
100	8.89	24.6	16.9	13.1	8.7	5.6	3.8	2.4
150	67.8	26.4	19.5	15.7	10.2	6.3	3.8	2.3
200	68.6	20.9	13.9	8.6	6.1	3.7	2.4	1.7
250 (62.9	30.2	20.6	14.9	8.9	4.4	2.2	1.3
300	69.2	27.2	18.6	13.1	8.4	4.3	2.1	1.2
350	70.8	19.6	12.9	6.3	6.3	4.4	2.6	1.6
400	69.4	19.8	13.0	0.6	5.6	3.6	2.5	1.7
450	73.0	20.4	14.3	10.0	6.1	3.7	2.5	1.8
200	70.7	18.5	12.3	8.8	5.6	3.5	2.2	1.6
ı×	68.8	24.2	16.6	12.1	7.6	4.4	2.6	1.7
S	2.4	6.3	4.6	3.4	2.0	1.0	0.6	0.4

Tabel E35. Continued.

Station	Load (psi)	$\begin{pmatrix} \delta_1 \\ (x \ 10^{-3} \ in) \end{pmatrix}$	6_2 (x 10^{-3} in)	δ_3 (x 10 ⁻³ in)	δ ₄ (x 10 ⁻³ in)	65 (x 10 ⁻³ in)	δ ₆ (x 10 ⁻³ in)	δ_7 (x 10^{-3} in)
_	97.2	26.2	17.8	13.1	8.3	4.6	2.4	1.4
20	90.8	50.9	35.6	28.4	15.2	6.8	3.1	2.6
100	97.4	34.4	24.6	19.8	13.0	8.0	4.8	3.1
150	94.3	35.7	26.9	22.5	14.7	8.6	5.2	4.1
200	93.4	26.3	18.1	13.1	8.4	5.2	3.3	2.3
250	91.1	39.6	272.	19.6	12.1	6.1	2.9	1.7
300	95.7	34.6	24.0	17.4	10.9	5.6	2.6	1.4
350	101.8	25.8	17.9	13.3	8.9	5.6	3.7	2.5
400	92.6	25.1	16.5	11.9	7.6	4.9	3.3	2.3
450	90.8	24.7	17.6	12.8	8.0	5.0	3.3	2.3
200	9.96	23.4	15.4	11.3	7.4	4.8	3.1	2.2
ı×	95.0	31.5	22.0	16.6	10.4	0.9	3.4	2.4
S	3.4	8.5	6.3	5.4	2.9	1.6	0.8	0.8

Table E35. Continued.

in)		***************************************		·····					·				
6 ₇ (x 10 ⁻³ i	1.7	3.1	4.7	5.6	3.3	1.9	1.5	3.5	3.4	3.4	3.2	3.2	1.2
δ ₆ (x 10 ⁻³ in)	3.0	3.6	7.6	7.4	4.8	3.7	3.1	5.4	4.9	4.7	4.3	4.8	1.5
δ ₅ (x 10 ⁻³ in)	5.7	8.5	12.2	13.8	7.6	8.3	7.1	8.5	7.1	7.1	9.9	8.4	2.4
δ _μ (x 10 ⁻³ in)	10.5	20.5	18.2	21.0	21.1	16.8	14.1	12.7	10.9	11.2	10.2	14.4	4.0
6 ₃ (x 10 ⁻³ in)	16.7	39.4	23.6	26.3	18.5	25.0		18.5	16.5	17.4	15.2	21.7	7.3
6_2 (x 10 ⁻³ in)	22.0	46.4	35.0	37.3	24.9	37.2	34.7	24.5	22.9	23.6	20.6	29.9	8.5
6_1 (x 10^{-3} in)	33.0	6.99	47.3	49.1	35.7	53.4	44.4	35.4	33.5	32.8	30.9	42.0	11.3
Load (psi)	132.4	122.2	135.1	127.9	128.6	125.5	129.9	138.7	131.9	125.4	126.1	129.4	4.8
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	s

Table E35. Continued.

Station	Load	δ1	δ2	ł		δs	δ ₆	8,
	(pst)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	×	$(x 10^{-3} in)$	$(x 10^{-3} in)$	$(x 10^{-3} in)$
_	160.4	37.8	26.6	22.8	11.6	6.3	3.1	1.7
20	148.4	81.6	56.2	42.1	24.9	10.2	4.0	3.6
100	165.1	58.5	42.7	28.8	21.8	15.5	9.8	6.0
150	158.0	61.1	46.9	32.0	26.3	16.7	10.4	7.0
200	159.0	43.9	30.4	23.1	15.5	9.7	6.3	4.3
250	152.2	65.1	44.3	33.0	21.9	10.4	4.5	2.2
300	156.0	55.2	35.2	29.0	17.1	8.5	3.3	1.6
350	166.8	42.8	30.4	22.2	15.8	10.9	6.9	4.4
400	162.0	40.4	29.0	19.8	13.7	9.1	6.3	4.4
450	150.4	39.8	29.3	21.3	14.0	9.1	6.1	4.3
200	154.1	37.6	25.0	18.7	12.8	8.5	5.7	4.0
ı×	157.5	51.2	36.0	26.6	17.8	10.4	0.9	4.0
S	5.9	14.2	10.0	7.1	5.1	3.1	24.	1.7
			The state of the s					

SR 174, FWD Data, 03/20/84, Surface Temperature = 40° F. Table E36.

		ď	,		·	,		
Station	Load (psi)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	(x 10 ⁻³ in)	$(\times 10^{-3} \text{ in})$	o _s (x 10 ⁻³ in)	کو (× 10 ⁻³ in)	6 ₇ (x 10 ⁻³ in)
_	71.1	20.6	13.4	10.0	6.2	3.4	1.9	1.1
20	61.1	32.0	21.7	16.1	10.0	5.5	2.8	1.7
100	8.69	19.4	14.1	10.9	7.5	5.0	3.2	2.2
150	9.99	20.4	16.8	12.7	9.5	6.1	3.5	2.4
200	70.4	18.1	12.7	9.6	6.1	3.6	2.3	1.6
250	65.4	21.6	16.2	11.7	8.0	8.9	2.4	1.3
300	66.2	21.9	14.6	10.7	6.7	4.2	2.2	1.2
350	68.8	20.0	13.7	10.0	6.4	3.9	2.6	1.8
400	. 68.4	17.8	11.1	8.1	5.0	3.3	2.3	1.6
450	6.99	18.7	10.5	8.5	5.3	3.4	2.3	1.7
200	68.2	17.4	12.0	8.8	5.7	3.5	2.3	1.6
ı×	67.5	20.7	14.2	10.6	6.9	4.4	2.5	1.6
S	2.8	4.0	3.1	2.3	1.6	1.2	0.5	0.4
			·					

Table E36. Continued.

													
67 (x 10 ⁻³ in)	1.5	2.3	3.2	3.8	2.2	1.5	1.4	2.5	2.4	2.3	2.2	2.3	0.7
δ ₆ (x 10 ⁻³ in)	2.5	3.5	4.8	0.9	3.2	3.3	3.1	3.7	3.2	3.3	3.2	3.6	1.0
δ ₅ (x 10 ⁻³ in)	4.4	7.2	7.6	9.1	5.0	6.3	5.7	5.6	4.7	4.9	5.0	0.9	1.5
$\delta_{t_{\star}}$ (x 10^{-3} in)	8.1	13.5	11.3	13.6	8.4	11.2	9.5	9.1	7,.2	7.8	7.8	9.8	2.3
6_3 (x 10 ⁻³ in)	13.1	20.4	16.9	18.5	12.8	16.6	14.9	13.7	11.1	11.8	11.9	14.7	3.0
$(x 10^{-3} in)$	16.8	27.6	20.6	23.2	17.3	22.0	19.6	18.8	15.4	16.3	16.2	19.4	3.7
δ ₁ (x 10 ⁻³ in)	26.4	42.0	28.3	29.4	23.7	29.9	29.5	30.0	23.3	24.6	23.4	29.5	5.3
Load (psi)	99.0	85.6	99.0	95.3	98.9	94.8	95.0	98.8	9.96	94.7	97.3	95.9	3.8
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

Table E36. Continued.

6, (x 10 ⁻³ in)	1.8	3.0	4.6	5.4	3.4	1.9	1.9	3.6	3.5	3.4	3.3	3.2	1.1
δ ₆ (× 10 ⁻³ in)	3.1	4.6	7.1	8.4	4.9	4.3	3.8	5.4	4.8	4.8	4.6	5.1	1.5
6_5 (x 10 ⁻³ in)	5.6	9.4	11.1	13.2	7.6	8.6	7.5	8.2	6.9	7.2	7.1	8.4	2.1
64 (x 10^{-3} in)	10.3	18.1	16.3	19.4	12.3	15.5	12.3	12.8	10.5	11.1	10.9	13.6	3.2
6 ₃ (x 10 ⁻³ in)	16.7	26.5	22.4	15.3	18.9	23.5	20.9	19.5	15.9	15.3	16.1	20.1	3.9
6 ₂ (x 10 ⁻³ in)	20.5	36.7	26.1	28.7	21.7	28.6	25.6	22.8	19.8	22.0	20.1	24.8	5.1
δ ₁ (x 10 ⁻³ in)	33.0	55.5	38.6	41.3	32.6	41.3	38.7	37.4	31.2	32.4	31.3	37.6	7.1
Load (psi)	136.8	117.9	135.5	131.8	137.0	132.1	131.0	135.8	135.1	132.6	135.4	132.8	5.4
Station	_	50	100	150	200	250	300	350	400	450	200	ı×	S

APPENDIX F TEMPERATURE DATA SUMMARIES

Table Fl. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1982-83 (Source: Blewett WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Nov. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	36 39 38 35 36 32 33 37 34 23 30 29 28 26 27 32 29 31 30 24 18 17 12 14 12 19 24 32 36	4 7 6 3 4 0 1 5 2 9 - 2 - 3 - 4 - 6 - 5 0 0 - 3 - 1 - 2 - 18 - 20 - 13 - 20 - 13 - 20 + 4 + 4	4 11 17 20 24 24 25 30 32 21 18 14 8 3 3 0 - 1 - 3 - 11 - 25 - 40 - 60 - 78 - 98 - 111 - 119 - 119 - 115	Dec. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	30 29 32 35 29 28 23 20 18 20 16 21 22 28 27 32 33 30 28 29 26 26 23 22 24 20 17 17 20 8	- 2 - 3 0 3 - 4 - 9 - 12 - 14 - 12 - 16 - 11 - 10 - 4 - 5 0 1 - 2 - 4 - 6 - 9 - 10 - 10 - 8 - 12 - 15 - 15	-116 -119 -116 -119 -116 -119 -123 -132 -144 -158 -170 -186 -197 -207 -211 -216 -216 -215 -217 -221 -224 -230 -236 -245 -255 -265 -273 -285 -300 -315 -327 -351

Table F1. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1982-83 (Source: Blewett WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Jan. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	8 15 22 27 32 33 32 40 29 41 34 40 41 35 32 28 30 32 29 31 29 32 32 32 32 32 32 32 32 32 33 34 35 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	-24 -17 -10 - 0 1 0 8 3 9 2 8 9 3 0 4 2 0 3 1 3 0 2 3 5 0 0 6 4 2 2	375 392 402 407 406 406 398 401 392 390 382 373 370 374 376 376 376 379 380 383 383 383 385 387 377 377 377 377 377 383 387	Feb. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	30 26 27 24 24 25 22 28 26 32 34 35 36 30 29 38 38 32 32 32 32 32 32 32 31 31 31	- 2 - 5 - 8 - 7 - 10 - 6 - 0 2 3 3 4 2 3 6 6 0 0 0 0 6 4 0 2 1 1	-389 -395 -400 -408 -416 -423 -433 -437 -443 -443 -441 -438 -435 -431 -433 -436 -430 -424 -424 -424 -424 -418 -416 -417 -418

Table Fl. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1982-83 (Source: Blewett WSDOT Facility). (Cont.)

		•		• • • • • • • • • • • • • • • • • • • •			
Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Mar. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	32 32 34 37 36 32 36 35 39 37 38 37 38 37 32 30 32 34 36 33 34 36 37 36 37 36 37 36 31 36 31 31 32 31 32 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31	0 0 2 5 4 0 4 3 3 7 5 6 5 0 2 0 2 4 1 2 4 5 4 2 2 1 4 0 1 3	-418 -418 -416 -411 -407 -407 -403 -400 -397 -390 -385 -370 -374 -374 -376 -374 -376 -376 -374 -370 -369 -367 -363 -358 -354 -352 -350 -349 -345 -345 -346 -343	Apr. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	34 31 29 31 36 39 42 47 42 42 37 31 34 49 44 45 49 49 44 42 37 36 39 39	2 - 1 - 3 - 1 9 10 15 10 10 - 1 - 1 2 7 9 12 13 17 17 12 10 10 10 10 10 10 7 7	-337 -338 -341 -342 -338 -331 -321 -306 -396 -286 -281 -282 -283 -281 -274 -265 -253 -240 -223 -206 -194 -184 -174 -164 -154 -149 -145 -138 -131 -124

Winter $1982-83 \text{ FI} = 32 - (-443) = 475^{\circ}\text{F} - \text{days}$

Table F2. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1983-84 (Source: Blewett WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Nov. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	50 44 44 39 31 35 33 34 33 36 35 37 37 37 37 33 31 32 28 29 29 29 29 30 30 31 32 24 24	18 12 12 7 - 1 - 3 1 2 1 4 3 5 5 1 - 0 - 3 - 2 - 1 - 3 - 2 - 1 - 8 - 8	18 30 42 49 48 47 50 51 53 54 55 62 63 67 70 75 80 81 80 80 76 73 70 68 66 65 65 57 49	Dec. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	16 18 20 15 19 18 16 19 29 30 26 27 32 25 18 16 12 14 11 - 6 - 9 -10 0 10 16 13 15 18 29	-16 -14 -12 -17 -13 -14 -16 -13 - 3 - 3 - 2 - 6 - 5 - 0 - 7 -14 -16 -20 -18 -21 -33 -38 -41 -42 -32 -16 -19 -17 -14 - 3	33 19 7 - 10 - 23 - 37 - 53 - 66 - 69 - 72 - 74 - 80 - 85 - 92 -106 -122 -142 -160 -181 -214 -252 -293 -335 -367 -389 -405 -424 -441 -455 -458

Table F2. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1983-84 (Source: Blewett WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Jan. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	27 30 34 43 41 38 39 33 32 30 32 30 32 30 23 12 17 18 10 8 10 11 24 27 35 38 33 33 33 33 33 33 32 35 30 31 32 31 32 31 32 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31	- 5 - 2 11 9 6 7 1 0 - 2 - 20 - 15 - 14 - 22 - 24 - 22 - 21 - 8 - 5 3 5 1 7 4 0 0	-463 -465 -463 -452 -443 -437 -430 -429 -429 -431 -431 -433 -435 -444 -479 -493 -515 -582 -590 -595 -592 -595 -592 -587 -586 -585 -574 -574	Feb. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	31 34 39 35 38 35 29 34 30 32 33 36 30 32 33 28 26 27 30 32 28 29 30 27 26 25 28 32	-1 2 7 3 6 3 -2 -2 0 1 4 -2 1 -4 -5 -2 0 -4 -3 -2 -5 -6 -7 -4 0	-575 -573 -571 -564 -561 -555 -555 -555 -557 -557 -556 -557 -556 -552 -554 -553 -563 -568 -570 -570 -574 -577 -579 -584 -590 -597 -601 -601

Table F2. Temperature Data Summary for SR 97 (MP 183.48) for Winter 1983-84 (Source: Blewett WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days
Mar. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	36 33 29 36 34 39 42 46 46 45 39 41 35 35 41 38 38 39 40 37 36 44 38 39 34 35 42 37 36	4 1 - 3 4 2 7 10 14 13 7 9 3 3 9 6 6 6 7 8 5 4 12 6 7 2 3 10 5 4	-597 -596 -599 -595 -593 -586 -576 -562 -548 -535 -528 -519 -516 -513 -504 -498 -492 -486 -479 -471 -466 -462 -450 -444 -437 -435 -432 -422 -417 -413
31	36	4	-409

Winter 1983-84 FI = 81 -(-595) = 676 $^{\circ}$ F - days

Table F3. Temperature Data Summary for SR 2 (MP 117.38) for Winter 1983-84 (Source: Wenatchee WSDOT Facility).

Month/Date Daily Mean Temp. Degree Days Cumulative Degree Days Month/Date Daily Mean Temp. Degree Days Cumulative Degree Days lov. 1, 1983 54 22 22 Dec. 1, 1983 24 8 234 2 47 15 37 2 22 10 224 3 48 16 53 3 23 9 215 4 48 16 69 4 23 9 206 5 45 13 82 5 24 8 198 6 45 13 82 5 24 8 181 8 41 9 114 8 20 12 169 9 40 8 122 9 22 10 159 10 40 8 130 10 26 6 153 11 39 7 137 11 26 6<
3

Table F3. Temperature Data Summary for SR 2 (MP 117.38) for Winter 1983-84 (Source: Wenatchee WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Jan. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	23 28 30 44 44 39 38 33 32 32 27 26 21 20 17 15 15 21 22 28 36 42 40 37 37 38 38 33	- 9 - 9 - 4 - 2 12 17 - 6 1 1 0 0 0 0 - 6 - 11 - 12 - 17 - 17 - 17 - 10 - 4 10 8 5 6 6 2	-178 -187 -191 -193 -181 -169 -162 -156 -155 -154 -154 -154 -154 -159 -165 -176 -188 -203 -220 -237 -248 -258 -248 -240 -235 -230 -224 -218 -216	Feb. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	34 30 30 31 31 32 34 36 36 36 36 37 37 36 37 36 37 37 38 35 35 32 34 42 38 32 34 42 38 42	2 - 2 2 - 1 0 2 2 4 4 4 4 4 8 7 5 4 3 3 2 10 4 6 3 3 0 6 10	-214 -216 -218 -220 -221 -222 -222 -220 -218 -214 -210 -206 -202 -198 -190 -183 -178 -174 -171 -168 -166 -156 -152 -146 -143 -140 -140 -134 -124

Winter 1983-84 FI = 248 -(-262) = 510°F - days

Table F4. Temperature Data Summary for SR 2 (MP 159.6) for Winter 1982-83 (Source: Waterville WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Nov. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	40 42 38 37 42 38 38 35 32 32 32 33 31 30 29 29 31 29 29 31 29 29 31 29 29 24 14 15 20 20 24 28 31 35 36 37 37 38 38 38 39 39 30 30 30 30 30 30 30 30 30 30	8 10 6 5 10 6 6 3 0 0 1 - 1 - 2 - 3 - 1 - 2 - 3 - 1 - 12 - 18 - 17 - 12 - 12 - 12 - 12 - 12 - 12 - 13 - 12 - 13 - 14 - 15 - 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	8 18 24 29 39 45 51 54 54 54 55 53 51 48 45 44 41 37 29 11 - 6 -18 -30 -38 -42 -43 -40 -38	Dec. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	33 32 30 38 35 32 23 17 17 18 22 20 18 26 26 31 37 30 28 31 28 25 28 23 25 24 22 18 14 21 20	1 0 - 2 6 3 0 - 15 -14 -10 -12 -14 - 6 - 1 - 12 - 14 - 7 - 9 - 7 - 18 - 11 - 12 - 14 - 18 - 11 - 12 - 14 - 15 - 16 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	- 37 - 37 - 39 - 33 - 30 - 30 - 39 - 54 - 69 - 84 - 93 -105 -119 -125 -131 -132 -127 -129 -133 -134 -138 -145 -149 -158 -165 -173 -183 -197 -215 -226 -238

Table F4. Temperature Data Summary for SR 2 (MP 159.6) for Winter 1982-83 (Source: Watervill WSDOT Facility). (Cont.)

	Daily	Degree-	Cumulative		Dadle	D -	
Month/Date	Mean Temp.	Days	Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Jan. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13	14 18 14 14 22 31 27 35 35 35 39 45 37	-18 -14 -18 -18 -10 - 1 - 5 - 3 - 7 - 13 - 5 - 2	-256 -270 -288 -306 -316 -317 -322 -319 -316 -309 -296 -291	Feb. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13	35 34 30 28 26 28 22 30 27 25 28 35 37	3 2 - 2 - 4 - 6 - 4 - 10 - 2 - 5 - 7 - 4 3 5	-287 -285 -287 -291 -297 -301 -311 -313 -318 -325 -329 -326 -321
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	30 30 29 30 29 33 34 36 32 28 30 34 31 35 32 34 32 33	- 2 - 3 2 3 1 2 4 0 4 2 2 1 3 0 2 0 1	-288 -290 -293 -295 -298 -297 -295 -291 -295 -295 -296 -293 -293 -291 -291 -290	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	37 32 28 36 39 36 35 36 37 38 39 35 34 36 38	5 0 4 7 4 3 4 5 6 7 3 2 4 6	-316 -316 -320 -316 -309 -305 -302 -298 -293 -287 -280 -277 -275 -271 -265

Winter 1982-83 FI = $55 - (-329) = 384 \, ^{\circ}F - days$

Table F5. Temperature Data Summary for SR 2 (MP 159.6) for Winter 1983-84 (Source: Waterville WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
DV. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	51 43 46 45 42 42 40 37 34 35 38 38 38 38 42 37 42 45 40 39 39 39 39 31 32 31 32 31 32 31 27 26 22	19 11 14 13 10 10 8 5 2 3 6 6 10 5 10 13 8 7 7 2 - 1 0 - 1 0 2 - 5 - 6 -10	19 30 44 57 67 77 85 90 92 95 101 107 113 123 128 138 151 159 166 173 180 182 181 181 180 180 182 177 171 161	Dec. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	15 18 19 18 21 21 16 20 29 34 22 18 27 24 22 21 15 15 11 - 4 - 8 - 9 3 15 14 8 15 13 14	-17 -14 -13 -14 -11 -11 -16 -12 - 3 -10 -14 - 5 - 8 -10 -11 -17 -17 -21 -33 -36 -40 -41 -29 -17 -18 -24 -17 -19 -18	144 130 116 103 89 78 67 51 39 36 38 28 14 9 1 - 9 - 20 - 37 - 54 - 75 -108 -144 -184 -225 -254 -271 -289 -313 -330 -349 -367

Temperature Data Summary for SR 2 (MP 159.6) for Winter 1983-84 (Source: Waterville WSDOT Facility). (Cont.) Table F5.

				,	r		,,
Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Jan. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	20 25 26 30 42 35 32 31 29 32 34 32 24 12 11 17 40 43 40 39 45 40 41 32	-12 - 7 - 6 - 2 10 - 1 - 3 - 20 - 19 - 21 - 15 - 8 11 8 7 13 8 9 0	-379 -386 -392 -394 -384 -381 -380 -381 -384 -382 -382 -390 -410 -429 -446 -468 -489 -509 -545 -550 -542 -531 -523 -516 -503 -486 -486	Feb. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	34 32 35 32 31 32 27 29 32 30 35 31 33 34 38 36 30 30 30 33 32 36 34 36 32 31 26 30 38	2 0 3 0 - 1 0 5 - 3 0 - 2 3 - 1 2 6 4 2 2 - 2 1 0 4 2 4 0 1 - 6 2 6	-484 -481 -481 -482 -482 -482 -489 -490 -499 -489 -489 -481 -477 -479 -481 -482 -482 -478 -472 -472 -473 -479 -481 -475

Table F5. Temperature Data Summary for SR 2 (MP 159.6) for Winter 1983-84 (Source: Waterville WSDOT Facility). (Cont.)

Month/Date	Daily	Degree-	Cumulativie
	Mean Temp.	Days	Degree-Days
Mar. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	35 35 37 37 39 38 41 42 40 40 40 40 40 40 41 43 40 41 43 44 44 44 41 43 47 40 41 41 41	3 5 7 6 9 10 8 8 8 8 8 9 11 8 12 12 11 15 8 9 9	-472 -469 -464 -459 -452 -446 -437 -427 -419 -411 -403 -395 -387 -384 -377 -371 -363 -355 -346 -335 -327 -315 -299 -287 -275 -266 -255 -240 -232 -214

Winter $1983-84 \text{ FI} = 182 - (-550) = 732 ^{\circ}\text{F} - \text{days}$

Table F6. Temperature Data Summary for SR 172 for Winter 1982-83 (Source: Mansfield WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree Days
Nov. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	39 39 40 42 38 38 34 36 32 33 31 30 28 28 29 26 23 14 13 16 17 17 20 35	7 7 7 8 10 6 6 2 4 0 0 1 - 2 4 6 2 2 3 6 6 9 8 - 16 6 - 15 5 - 15 2 - 3	7 14 21 29 39 45 51 53 57 58 58 57 55 41 38 32 26 17 - 1 -20 -36 -52 -67 -82 -94 -91	Dec. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	34 35 31 31 30 26 16 20 23 23 26 22 27 36 38 34 30 28 28 20 21 20 21 15 16 12 11	2 3 0 - 1 - 1 - 16 - 16 - 17 - 16 - 17 - 17 - 17	- 89 - 86 - 87 - 87 - 89 - 95 -111 -127 -139 -148 -157 -163 -173 -178 -174 -168 -166 -164 -166 -170 -174 -180 -191 -203 -215 -232 -248 -268 -289 -306

Table F6. Temperature Data Summary for SR 172 for Winter 1982-83 (Source: Mansfield WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Jan. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	15 15 15 13 26 32 25 30 30 35 28 37 36 38 32 31 25 30 36 34 35 33 32 30 33 35 34 33 33 34 33	-17 -17 -17 -19 - 0 - 7 - 2 - 3 - 4 - 7 - 2 - 4 2 3 1 0 - 1 3 2 1 1 2 2	-323 -349 -357 -376 -382 -382 -389 -391 -393 -390 -394 -389 -385 -370 -379 -380 -387 -389 -385 -383 -380 -379 -370 -381 -380 -377 -375 -374 -373 -371 -369	Feb. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	34 34 32 26 23 20 28 28 28 30 30 30 30 30 30 40 40 40 40 40 40 40 40 39 39	22069244422222188888888877	-367 -365 -365 -371 -380 -392 -396 -400 -404 -406 -408 -410 -412 -414 -416 -414 -413 -405 -397 -389 -381 -373 -365 -357 -349 -341 -334 -327

Winter 1982-83 FI = $58 - (-416) = 474 \, ^{\circ}F - days$

Table F7. Temperature Data Summary for SR 172 for Winter 1983-84 (Source: Mansfield WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree Days
1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	48 46 48 46 44 43 41 37 41 35 38 31 40 40 45 41 40 39 38 37 34 33 32 32 32 32 32 32 32 32	16 14 16 14 12 11 9 5 9 8 8 13 9 8 7 6 5 2 1 1 0 0 - 1 - 1 0 - - 1 0 1 0	16 30 46 60 72 83 92 97 106 109 115 121 127 136 144 152 163 172 180 187 193 198 200 201 202 202 202 201 195 185	Dec. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	17 17 16 15 14 22 22 17 22 24 24 26 23 25 24 19 15 14 10 7 1 8 5 6 5 16 18 13 16 11	-15 -15 -16 -17 -18 -10 -10 -15 -10 - 8 - 8 - 9 - 7 - 8 - 13 - 17 - 18 - 22 - 25 - 31 - 24 - 27 - 27 - 26 - 16 - 19 - 16 - 19 - 11	170 155 139 122 104 94 84 69 59 51 43 38 28 21 13 0 - 17 - 35 - 57 - 82 -113 -164 -191 -217 -244 -260 -274 -293 -309 -320

Table F7. Temperature Data Summary for SR 172 for Winter 1983-84 (Source: Mansfield WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Day	Cumulative Degree Days
Jan. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	21 21 26 32 42 36 33 30 30 29 23 28 20 20 12 18 10 9 16 17 24 36 37 38 36 36 36 36 36 36 36	-11 -11 - 6 0 10 4 1 - 2 - 3 - 9 - 4 -12 -12 -20 -14 -22 -23 -16 -15 - 8 4 4 4 4 4 1	-331 -342 -348 -348 -338 -334 -333 -332 -334 -336 -339 -348 -352 -364 -376 -396 -410 -432 -455 -478 -494 -509 -517 -513 -508 -502 -498 -494 -490 -486 -485	Feb. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	34 30 32 31 30 29 28 30 32 31 31 30 30 30 34 36 32 32 32 32 32 32 32 32 32 32 32 32 32	2 -2 0 -1 -2 -3 -4 -2 0 -1 -2 -2 -2 2 4 0 0 0 0 5 2 2 0 -2 2 4	-483 -485 -485 -486 -488 -491 -495 -497 -497 -498 -499 -501 -503 -503 -505 -503 -499 -499 -499 -499 -490 -490 -490 -490

Winter $1983-84 \text{ FI} = 202 - (-517) = 719^{\circ}\text{F} - \text{days}$

Table $^{\rm F8}$. Temperature Data Summary for SR 174 for Winter 1982-83 (Source: Electric City WSDOT Facility).

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Nov. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	42 42 45 43 44 41 40 39 37 38 38 37 35 34 32 33 37 42 37 33 37 42 37 32 33 29 19 20 23 23 24 24 27 35	10 10 13 11 12 9 8 7 5 6 6 5 3 2 0 1 5 1 7 5 6 6 5 3 2 0 1 5 1 1 2 1 2 1 2 3 1 2 3 3 1 3 1 3 1 3 1 3		Dec. 1, 1982 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	39 39 38 40 40 42 29 25 24 15 19 20 24 20 37 44 39 38 37 36 32 38 26 26 26 26 24 18 20 22 20 22	7 7 6 8 8 10 - 7 - 13 - 12 - 12 - 12 - 12 - 12 - 12 - 12	75 82 88 96 104 114 111 104 96 79 66 54 46 34 37 49 56 62 67 71 77 73 67 61 555 47 33 21 11 -1

Table F8. Temperature Data Summary for SR 174 for Winter 1982-83 (Source: Electric City WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Jan. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	21 22 26 30 34 33 37 38 42 41 36 34 31 28 28 33 36 36 36 37 37 38 45 40 40 38 38 36	-11 -10 -10 -10 -10 -10 -10 -10 -10 -10	-13 -24 -34 -40 -42 -40 -39 -34 -28 -18 - 1 5 7 6 5 1 - 2 6 10 15 20 26 39 47 55 61 67 71	Feb. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	36 34 32 30 29 30 32 30 35 36 42 40 40 40 40 42 43	4 2 0 2 - 3 - 4 - 2 - 3 - 3 - 4 - 0 - 3 - 3 - 4 - 10 - 7 9 10 8 8 8 8 8 8 13 14 9 10 11 11 11 11 11 11 11 11 11 11 11 11	75 88 88 75 72 68 66 64 61 64 67 71 81 88 97 107 115 123 131 148 156 169 183 192 202 212 223

Winter $1982-83 \text{ FI} = 130 - (-42) = 172 ^{\circ}\text{F} - \text{days}$

Table F9. Temperature Data Summary for SR 174 for Winter 1983-84 (Source: Electric City WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree-Days
Nov. 1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	51 51 52 52 49 49 46 38 40 40 43 43 43 44 44 49 48 44 44 44 44 41 38 38 38 39 39 39 39 35 30	19 19 20 20 17 17 14 6 8 11 11 14 12 17 16 12 12 12 12 12 12 12 12 12 12 12 12 12	19 38 58 78 95 112 126 132 140 148 159 170 181 195 207 224 240 252 264 276 288 297 303 309 315 322 329 336 339 337	Dec.1, 1983 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		-10 - 7 - 8 - 9 -10 - 6 - 8 - 8 - 5 - 1 - 1 - 1 - 17 - 18 - 27 - 31 - 33 - 22 - 22 - 22 - 11 - 16 - 16 - 13	327 320 312 303 293 287 279 271 266 265 264 268 267 268 267 268 269 265 255 244 227 209 182 151 118 96 74 52 41 25 9

Table F9. Temperature Data Summary for SR 174 for Winter 1983-84 (Source: Electric City WSDOT Facility). (Cont.)

Month/Date	Daily Mean Temp.	Degree- Days	Cumulative Degree-Days	Month/Date	Daily Mean Temp.	Degree Days	Cumulative Degree Days
Jan. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	23 24 28 35 37 37 36 36 35 34 33 28 26 24 20 20 18 12 17 18 23 32 40 39 34 35 36 37 36 37 38 30 30 30 30 30 30 30 30 30 30 30 30 30	- 9 - 8 - 6 - 3 - 5 - 4 - 3 2 - 2 - 6 - 8 2 - 12 - 14 - 20 - 14 - 20 - 14 - 9 - 7 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 7 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8	- 22 - 30 - 36 - 33 - 28 - 23 - 19 - 15 - 12 - 10 - 9 - 11 - 15 - 21 - 27 - 35 - 47 - 59 - 73 - 93 - 108 - 122 - 131 - 123 - 116 - 114 - 111 - 107 - 102 - 98	Feb. 1, 1984 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	30 32 31 31 30 31 32 35 34 34 34 34 34 35 35 35 35 36 37 38 35 36 37 38 35 36 37 38 35 36 40 41	-0011210322222563333345433289	-100 -100 -100 -101 -102 -104 -105 -105 -102 -100 - 98 - 96 - 94 - 92 - 87 - 81 - 78 - 75 - 72 - 69 - 66 - 62 - 57 - 53 - 50 - 47 - 45 - 37 - 29

Winter $1983-84 \text{ FI} = 339 - (-131) = 470^{\circ}\text{F} - \text{days}$.